精英家教网 > 高中数学 > 题目详情
(本题满分16分)
一束光线从点出发,经过直线上的一点D反射后,经过点.
⑴求以A,B为焦点且经过点D的椭圆C的方程;
⑵过点作直线交椭圆C于P、Q两点,以AP、AQ为邻边作平行四边形APRQ,求对角线AR长度的取值范围。
(1)点关于直线的对称点为
,所以,
所求椭圆方程为:.
(2) 设直线
联立方程组,消去x得:



练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

为过椭圆的中心的弦,为椭圆的左焦点,则?面积的最大值(  )
A.6B.12C.24D.36

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:的左、右焦点为,其上顶点为.已知是边长为的正三角形.
(Ⅰ)求椭圆C的方程; 
(Ⅱ)过点任作一动直线交椭圆C于两点,记若在线段上取一点使得,试判断当直线运动时,点是否在某一定直线上运动?若在,请求出该定直线的方程;若不在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知椭圆的长半轴长为,且点在椭圆上.
(1)求椭圆的方程;
(2)过椭圆右焦点的直线交椭圆于两点,若,求直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)求过点且与椭圆有相同焦点的椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的上顶点为,右焦点为,直线与圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若不过点的动直线与椭圆相交于两点,且求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆的两焦点,为椭圆上一点,若,则离心率的范围是___________.

查看答案和解析>>

同步练习册答案