精英家教网 > 高中数学 > 题目详情
5.在一个正方体的内切球中有一个内接正四棱锥,记正四棱锥的体积为V1正方体的体积为V2,且V1=KV2,则K的最大值为(  )
A.$\frac{8}{81}$B.$\frac{16}{81}$C.$\frac{32}{81}$D.$\frac{64}{81}$

分析 设出正方体的棱长,求出球的半径,然后求解球的内接正四棱锥的体积的表达式,求出正四棱锥体积的最大值,即可求解K.

解答 解:设正方体的棱长为2,则正方体的内切球的半径为1,正方体的体积V2=8.
设正四棱锥底面边长为a,底面到球心的距离为x,
则:x2+($\frac{\sqrt{2}a}{2}$)2=12
是正四棱锥的体积为:V=$\frac{1}{3}$a2h=$\frac{1}{3}$a2(1+x)=$\frac{2}{3}$(1-x2)(1+x)其中x(0,1),
因为$\frac{2}{3}$(1-x2)(1+x)=$\frac{1}{3}$(2-2x)(1+x)(1+x)≤$\frac{1}{3}$$({\frac{2-2x+1+x+1+x}{3})}^{3}$=$\frac{64}{81}$,当且仅当x=$\frac{1}{3}$时取等号.
正四棱锥的最大值为:$\frac{64}{81}$,即V1=$\frac{64}{81}$,V1=KV2
可得$\frac{64}{81}$=8k,解得k=$\frac{8}{81}$.
故选:A.

点评 本题考查正方体的内接球,球的内接体,几何体的体积的求法,基本不等式的应用,考查分析问题解决问题以及空间想象能力计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,角α的始边为x轴的非负半轴,终边为射线l:y=2$\sqrt{2}$x(x≥0).
(1)求$cos(α+\frac{π}{6})$的值;
(2)若点P,Q分别是角α始边、终边上的动点,且PQ=6,求△POQ面积最大时,点P,Q的坐标.

查看答案和解析>>

科目:高中数学 来源:2017届云南曲靖市高三上半月考一数学试卷(解析版) 题型:填空题

已知函数,若是从三个数中任取的一个数,是从三个数中任取的一个数,则使函数有极值点的概率为_______.

查看答案和解析>>

科目:高中数学 来源:2017届四川成都七中高三10月段测数学(文)试卷(解析版) 题型:解答题

选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数,),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线.

(1)求曲线的普通方程,并将的方程化为极坐标方程;

(2)直线的极坐标方程为,其中满足,若曲线的公共点都在上,求.

查看答案和解析>>

科目:高中数学 来源:2017届四川成都七中高三10月段测数学(文)试卷(解析版) 题型:填空题

已知是抛物线的焦点,上的两个点,线段的中点为,则的面积等于 .

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线x+y+t=0与圆x2+y2=2相交于M、N两点,已知O是坐标原点,若|$\overrightarrow{OM}$+$\overrightarrow{ON}$|≤|$\overrightarrow{MN}$|,则实数t的取值范围是(  )
A.(-∞,-$\sqrt{2}$)∪[$\sqrt{2}$,+∞)B.[-2,2]C.[-2,-$\sqrt{2}$]∪[$\sqrt{2}$,2]D.[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.过抛物线E:y2=2px(p>0)外一点P作PO⊥x轴,垂足为Q,线段PQ交抛物线E于R点,连接OP交抛物线E于S点,直线RS与x轴交于A点,直线SQ与y轴交于B点,
(1)若R是PQ的中点,求证:P,B,A三点共线;
(2)设△SOA,△SOQ,△SQR,△SPQ的面积分别为S1,S2,S3,S4,求证:$\frac{{S}_{1}}{{S}_{2}}$=$\frac{{S}_{3}}{{S}_{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知凼数y=Asin(ωx+$\frac{π}{4}$)(A>0,ω>0)的周期为π,最大值为3,则A=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在圆内接四边形ABCD中,AB∥DC,过点A作圆的切线与CB的延长线交于点E.若AB=AD=BC=5,AE=6,则BE=4DC=$\frac{25}{4}$.

查看答案和解析>>

同步练习册答案