精英家教网 > 高中数学 > 题目详情
17.过抛物线E:y2=2px(p>0)外一点P作PO⊥x轴,垂足为Q,线段PQ交抛物线E于R点,连接OP交抛物线E于S点,直线RS与x轴交于A点,直线SQ与y轴交于B点,
(1)若R是PQ的中点,求证:P,B,A三点共线;
(2)设△SOA,△SOQ,△SQR,△SPQ的面积分别为S1,S2,S3,S4,求证:$\frac{{S}_{1}}{{S}_{2}}$=$\frac{{S}_{3}}{{S}_{4}}$.

分析 (1)设R($\frac{{{y}_{0}}^{2}}{2p},{y}_{0}$),把P,Q的坐标用R的坐标表示,求得OP所在直线方程,联立直线方程和抛物线方程求得S的坐标,由直线方程的两点式分别求得QS所在直线方程和RS所在直线方程,进一步求得B,A的坐标,由向量证明P,B,A三点共线;
(2)把三角形的面积比转化为边长比得答案.

解答 证明:(1)如图,
设R($\frac{{{y}_{0}}^{2}}{2p},{y}_{0}$),则P($\frac{{{y}_{0}}^{2}}{2p},2{y}_{0}$),Q($\frac{{{y}_{0}}^{2}}{2p},0$),
则OP所在直线方程为:$y=\frac{2{y}_{0}}{\frac{{{y}_{0}}^{2}}{2p}}x=\frac{4p}{{y}_{0}}x$,
联立$\left\{\begin{array}{l}{y=\frac{4p}{{y}_{0}}x}\\{{y}^{2}=2px}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{{{y}_{0}}^{2}}{8p}}\\{y=\frac{{y}_{0}}{2}}\end{array}\right.$,即S($\frac{{{y}_{0}}^{2}}{8p},\frac{{y}_{0}}{2}$),
则QS所在直线方程为:$\frac{y}{\frac{{y}_{0}}{2}}=\frac{x-\frac{{{y}_{0}}^{2}}{2p}}{\frac{{{y}_{0}}^{2}}{8p}-\frac{{{y}_{0}}^{2}}{2p}}=\frac{x-\frac{{{y}_{0}}^{2}}{2p}}{-\frac{3{{y}_{0}}^{2}}{8p}}$,
取x=0,得$y=\frac{2}{3}{y}_{0}$,∴B(0,$\frac{2}{3}{y}_{0}$),
RS所在直线方程为:$\frac{y-{y}_{0}}{-\frac{{y}_{0}}{2}}=\frac{x-\frac{{{y}_{0}}^{2}}{2p}}{\frac{{{y}_{0}}^{2}}{8p}-\frac{{{y}_{0}}^{2}}{2p}}$=$\frac{x-\frac{{{y}_{0}}^{2}}{2p}}{-\frac{3{{y}_{0}}^{2}}{8p}}$,
取y=0,得x=$-\frac{{{y}_{0}}^{2}}{4p}$,∴A($-\frac{{{y}_{0}}^{2}}{4p},0$),
$\overrightarrow{PB}=(-\frac{{{y}_{0}}^{2}}{2p},-\frac{4}{3}{y}_{0})$,$\overrightarrow{PA}=(-\frac{3{{y}_{0}}^{2}}{4p},-2{y}_{0})=\frac{3}{2}(-\frac{{{y}_{0}}^{2}}{2p},-\frac{4}{3}{y}_{0})$,
∴P,B,A三点共线;
(2)∵△SOA,△SOQ同高,∴$\frac{{S}_{1}}{{S}_{2}}$=$\frac{|OA|}{|OQ|}=\frac{|-\frac{{{y}_{0}}^{2}}{4p}|}{|\frac{{{y}_{0}}^{2}}{2p}|}=\frac{1}{2}$,
又△SQR,△SPQ同高,∴$\frac{{S}_{3}}{{S}_{4}}$=$\frac{|QR|}{|PQ|}$=$\frac{|{y}_{0}|}{|2{y}_{0}|}=\frac{1}{2}$,
∴$\frac{{S}_{1}}{{S}_{2}}$=$\frac{{S}_{3}}{{S}_{4}}$.

点评 本题考查了直线与抛物线的位置关系,考查了数形结合的解题思想方法,考查了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(n)=sin$\frac{nπ}{6}$(n∈Z),求值:
(1)f(1)+f(2)+f(3)+…f(102)
(2)f(1)f(2)f(3)…f(101)

查看答案和解析>>

科目:高中数学 来源:2017届云南曲靖市高三上半月考一数学试卷(解析版) 题型:选择题

幂函数的图象不过原点,且关于原点对称,则的取值是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在一个正方体的内切球中有一个内接正四棱锥,记正四棱锥的体积为V1正方体的体积为V2,且V1=KV2,则K的最大值为(  )
A.$\frac{8}{81}$B.$\frac{16}{81}$C.$\frac{32}{81}$D.$\frac{64}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线x2=4y,过点P(0,2)作斜率分别为k1,k2的直线l1,l2,与抛物线分别交于两点,若k1k2 =-$\frac{3}{4}$,则四个交点构成的四边形面积的最小值为(  )
A.18$\sqrt{3}$B.20$\sqrt{3}$C.22$\sqrt{3}$D.24$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知{an}的前n项和为Sn=2an-2(n∈N*
(1)求{an}的通项公式;
(2)若bn=$\frac{1}{lo{g}_{4}{a}_{n}•lo{g}_{4}{a}_{n+1}}$,求{bn}的前n项和Tn
(3)若对于任意的n∈N*  k>0,不等式$\frac{2lo{g}_{4}{a}_{n}+2}{k}≤{n}^{2}$+4n+5恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于M、N两点,自M、N向准线L作垂线,垂足分别为M1、N1,求证:FM⊥FN.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出定义:若m-$\frac{1}{2}<$x≤m+$\frac{1}{2}$(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题.
①函数y=f(x)的定义域是R,值域是[0,$\frac{1}{2}$]
②函数y=f(x)的图象关于x=$\frac{k}{2}$(k∈Z)对称;
③函数y=f(x)的图象关于点($\frac{k}{2}$,0)(k∈Z)对称;
④函数y=f(x)是周期函数,最小正周期是1;
⑤函数y=f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]上是增函数;
其中真命题是(填上所有真命题的序号)①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将二进制数10001化为五进制数为32(5)

查看答案和解析>>

同步练习册答案