分析 由抛物线的定义可得:|MF|=|MM1|,|NF|=|NN1|,可得∠MFM1=∠MM1F,∠NFN1=∠NN1F.利用MM1∥NN1,可得$∠FM{M}_{1}+∠FN{N}_{1}=18{0}^{°}$,即可证明.
解答 证明:由抛物线的定义可得:|MF|=|MM1|,|NF|=|NN1|,
∴∠MFM1=∠MM1F,∠NFN1=∠NN1F,
∵MM1∥NN1,
∴$∠FM{M}_{1}+∠FN{N}_{1}=18{0}^{°}$,
∴∠MFM1+∠NFN1=$\frac{1}{2}(18{0}^{°}-∠FM{M}_{1})$+$\frac{1}{2}(18{0}^{°}-∠FN{N}_{1})$=180°-90°=90°,
∴FM⊥FN.
点评 本题考查了抛物线的定义、平行线的性质、三角形的内角和定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com