精英家教网 > 高中数学 > 题目详情
已知f(x)=x2-(a+
1
a
)x+1

(Ⅰ)当a=
1
2
时,解不等式f(x)≤0;
(Ⅱ)若a>0,解关于x的不等式f(x)≤0.
分析:(I)将a的值代入不等式,利用二次不等式与二次方程根的关系写出不等式的解集.
(II)通过对A的讨论,判断出相应的二次方程的两个根的大小关系,写出二次不等式的解集.
解答:解:(I)当a=
1
2
时,有不等式f(x)=x2-
3
2
x+1≤0

(x-
1
2
)(x-2)≤0

∴不等式的解为:x∈{x|
1
2
≤x≤2}

(II)∵不等式f(x)=(x-
1
a
)(x-a)≤0

当0<a<1时,有
1
a
>a
,∴不等式的解集为{x|a≤x≤
1
a
}

当a>1时,有
1
a
<a
,∴不等式的解集为{x|
1
a
≤x≤a}

当a=1时,不等式的解为x=1.
点评:求一元二次不等式的解集时,若不等式中含参数,一般需要讨论,讨论的起点常从以下几方面考虑:二次项系数的符号、判别式的符号、两个根的大小
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
x2(x>0)
e(x=0)
0(x<0)
,则f{f[f(-2)]}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2,x>0
f(x+1),x≤0
则f(2)+f(-1)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对定义域中任意x,均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称;
(1)已知f(x)=
x2-mx+1x
的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=-2x-n(x-1),求函数g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的条件下,若对实数x<0及t>0,恒有g(x)+tf(t)>0,求正实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2,g(x)=(
1
2
)x-m
,若对任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是
m
1
4
m
1
4

查看答案和解析>>

同步练习册答案