【题目】设函数
的图象在
处取得极值4.
(1)求函数
的单调区间;
(2)对于函数
,若存在两个不等正数
,
,当
时,函数
的值域是
,则把区间
叫函数
的“正保值区间”.问函数
是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.
【答案】(1)
的递增区间是
和
,递减区间是
;(2)不存在,理由见解析.
【解析】
(1)由极值求出参数
,由导数的正负确定单调区间;
(2)根据函数的单调性分类讨论,首先确定两个极值点不能在
上,再按函数在
上的单调性求解.
(1)
,
依题意则有:
,即
解得
,
∴
.令
,
由
解得
或
,
所以函数
的递增区间是
和
,递减区间是
;
(2)设函数
的“正保值区间”是
,因为
,故极值点
不在区间
上;
①若极值点
在区间
,此时
,在此区间上
的最大值是
4,不可能等于
;故在区间
上没有极值点;
②若
在
上单调递增,即
或
,
则
,即
,解得
或
不符合要求;
③若
在
上单调减,即
,则
,
两式相减并除
得:
, ①
两式相除可得
,即
,
整理并除以
得:
,②
由①、②可得
,即s,t是方程
的两根,
解得
,
,但
不合要求.
综上可得不存在满足条件的s、t,即函数
不存在“正保值区间”
科目:高中数学 来源: 题型:
【题目】已知抛物线
,过点
的直线
交
于
,
两点,且满足以线段
为直径的圆,圆心为
,且过坐标原点
.
(1)求抛物线
的方程;
(2)若圆
过点
,求直线
的方程和圆
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )
![]()
A.12个月的PMI值不低于50%的频率为![]()
B.12个月的PMI值的平均值低于50%
C.12个月的PMI值的众数为49.4%
D.12个月的PMI值的中位数为50.3%
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
,短轴的两个端点分别为
.
(Ⅰ)若
为等边三角形,求椭圆
的方程;
(Ⅱ)若椭圆
的短轴长为
,过点
的直线
与椭圆
相交于
两点,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生的选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.
某学校为了解高一年级
名学生选考科目的意向,随机选取
名学生进行了一次调查,统计选考科目人数如下表:
性别 | 选考方案确定情况 | 物理 | 化学 | 生物 | 历史 | 地理 | 政治 |
男生 | 选考方案确定的有 |
|
|
|
|
|
|
选考方案待确定的有 |
|
|
|
|
|
| |
女生 | 选考方案确定的有 |
|
|
|
|
|
|
选考方案待确定的有 |
|
|
|
|
|
|
(1)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?
(2)假设男生、女生选择选考科目是相互独立的.从选考方案确定的
名学生中随机选出
名,试求在选取的
名学生中恰有
名男生的条件下两名学生的选考方案中都含有历史学科的概率;
(3)从选考方案确定的
名男生中随机选出
名,设随机变量
表示所选
人中选考方案完全相同的人数(若有
组
人选考方案完全相同,则
),求
的分布列及数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为
.
(1)问该厂至少有多少名维修工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不小于
?
(2)已知1名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,能使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人,求该厂每月获利的均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年7月,超强台风登陆某地区.据统计,本次台风造成该地区直接经济损失119.52亿元.经过调查住在该地某小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:
![]()
![]()
(1)根据频率分布直方图估计小区平均每户居民的平均损失;
(2)台风后区委会号召小区居民为台风重灾区捐款,经过调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有
以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(3)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由王师傅和张师傅两人进行维修,王师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求王师傅比张师傅早到小区的概率.
附:临界值表
![]()
参考公式:
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com