精英家教网 > 高中数学 > 题目详情
.已知椭圆的两个焦点为,且,弦AB过点,则△的周长为(   )
A.10B.20C.2D.
D

有椭圆定义得
 故选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

A为椭圆=1上任意一点,B为圆(x-1)2+y2=1上任意一点,则|AB|的最大值为________      最小值为 ________ 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分14分)已知椭圆的右焦点与抛物线的焦点重合,椭圆与抛物线在第一象限的交点为,求椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线的一个焦点为,则的值为___________,双曲线的渐近线方程为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线与椭圆+y2=1相交于A,B两点,当t变化时,AB的最大值是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设直线与椭圆相交于两个不同的点.
(1)求实数的取值范围;
(2)当时,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点P(4,0)且不垂直于x轴直线与椭圆C相交于A、B两点。
(1)求椭圆C的方程;
(2)求的取值范围;
(3)若B点在于x轴的对称点是E,证明:直线AE与x轴相交于定点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(12分)已知椭圆的中心在原点,分别为它的左、右焦点,直线为它的一条准线,又知椭圆上存在点,使得.
(1)求椭圆的方程;
(2)若是椭圆上不与椭圆顶点重合的任意两点,点关于轴的对称点是,直线分别交轴于点,点,探究是否为定值,若为定值,求出该定值,若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的两个焦点分别为作椭圆长轴的垂线交椭圆于点,若为等腰三角形,则椭圆的离心率为 (   )
A.B.C.D.

查看答案和解析>>

同步练习册答案