精英家教网 > 高中数学 > 题目详情
某工厂生产两种元件,其质量按测试指标划分为:大于或等于为正品,小于为次品.现从一批产品中随机抽取这两种元件各件进行检测,检测结果记录如下:






B





由于表格被污损,数据看不清,统计员只记得,且两种元件的检测数据的平均值相等,方差也相等.
(1)求表格中的值;
(2)从被检测的种元件中任取件,求件都为正品的概率.
(1);(2).

试题分析:(1)根据两种元件的检测数据的平均数与方差分别相等,利用平均数与方差的计算公式列方程组求出的值;(2)将元件编号,并将说明哪些是正品,利用列举法将所有的基本事件与问题中涉及事件所包含的基本进行列举,然后利用古典概型的概率计算公式求出相应事件的概率.
试题解析:(1)因为
,得,①
因为
,得,②
由①②解得
因为,所以
(2)记被检测的件的种元件分别为,其中为正品,
从中任取件,共有个基本事件,列举如下:

记“件都为正品”为事件,则事件包含以下个基本事件:

,所以件都为正品的概率为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某工厂有工人人,其中名工人参加过短期培训(称为类工人),另外名工人参加过长期培训(称为类工人).现用分层抽样的方法(按类、类分二层)从该工厂的工人中共抽查 名工人,调查他们的生产能力(此处的生产能力指一天加工的零件数).
(1)类工人和类工人中各抽查多少工人?
(2)从类工人中的抽查结果和从类工人中的抽查结果分别如下表1和表2.
表1
生产能力分组





人数





表2
生产能力分组




人数





①求,再完成下列频率分布直方图;
②分别估计类工人和类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组
中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:

其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,-1代表“生活不能自理”。
(1)随机访问该小区一位80岁以下的老龄人,该老人生活能够自理的概率是多少?
(2)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级. 某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为的考生有人.

(1)求该考场考生中“阅读与表达”科目中成绩为的人数;
(2)若等级分别对应分,分,分,分,分,求该考场考生“数学与逻辑”科目的平均分;
(3)已知参加本考场测试的考生中,恰有两人的两科成绩均为. 在至少一科成绩为的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

计算机中常用十六进制,采用数字0~9和字母A~F共16个计数符号与十进制得对应关系如下表:
16进制
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10进制
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
 
例如用十六进制表示有D+E=1B,则A×B=(    )
A.6E        B.7C           C.5F           D.B0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知对一组观测值(xi,yi)(i=1,2,…,n)作出散点图后,确定具有线性相关关系,若对于x,求得=0.51,=61.75,=38.14,则线性回归方程为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中,正确的是(    ).
A.数据5,4,4,3,5,2的众数是4
B.一组数据的标准差是这组数据的方差的平方
C.数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半
D.频率分布直方图中各小长方形的面积等于相应各组的频数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列五个命题:
①将三种个体按的比例分层抽样调查,如果抽取的个体为9个,则样本容量为30;
②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;
③甲组数据的方差为5,乙组数据为5,6,9,10,5,那么这两组数据中比较稳定的是甲;
④已知具有相关关系的两个变量满足的回归直线方程为,则每增加1个单位,平均减少2个单位;
⑤统计的10个样本数据为125,120,122,105,130,114,116,95,120,134,则样本数据落在内的频率为0.4.
其中真命题为(    )
A.①②④B.②④⑤C.②③④D.③④⑤

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果χ2的值为8.654,可以认为“X与Y无关”的可信度是________.

查看答案和解析>>

同步练习册答案