精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知的两顶点坐标,圆的内切圆,在边上的切点分别为(从圆外一点到圆的两条切线段长相等),动点的轨迹为曲线.

(1)求曲线的方程;
(2)设直线与曲线的另一交点为,当点在以线段为直径的圆上时,求直线的方程.

(1);(2)直线的方程.

解析试题分析:本题主要考查椭圆的第一定义、椭圆的标准方程、椭圆的几何意义、直线的方程、向量垂直的充要条件等基础知识,考查用代数法研究圆锥曲线的性质以及数形结合的数学思想方法,考查运算求解能力、综合分析和解决问题的能力.第一问,利用圆外一点到圆的两条切线段长相等,转化边,得到,所以判断出曲线是以为焦点,长轴长为的椭圆(挖去与轴的交点),利用已知求出椭圆标准方程中的基本量;第二问,根据已知设出直线的方程,直线与曲线联立,消参得关于的方程,求出方程的2个根,并且写出两根之和两根之积,因为点在以为直径的圆上,所以只需使,解出参数从而得到直线的方程.
试题解析:⑴解:由题知
所以曲线是以为焦点,长轴长为的椭圆(挖去与轴的交点),
设曲线

所以曲线为所求.         4分
⑵解:注意到直线的斜率不为,且过定点



,所以
所以           8分
因为,所以

注意到点在以为直径的圆上,所以,即,-----11分
所以直线的方程为所求.------12分
考点:1.椭圆的第一定义;2.椭圆的标准方程;3.直线与椭圆的位置关系;4.韦达定理;5.向量垂直的充要条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,椭圆经过点,其左、右顶点分别是,左、右焦点分别是(异于)是椭圆上的动点,连接交直线两点,若成等比数列.

(Ⅰ)求此椭圆的离心率;
(Ⅱ)求证:以线段为直径的圆过点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(1)求抛物线的方程;
(2)当的角平分线垂直轴时,求直线的斜率;
(3)若直线轴上的截距为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左、右焦点,且点在椭圆上.
(1)求椭圆的方程;
(2)过的直线交椭圆两点,则的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的左、右焦点分别为,椭圆的离心率为,且椭圆C经过点
(1)求椭圆C的标准方程;
(2)若线段是椭圆过点的弦,且,求内切圆面积最大时实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆的离心率为在椭圆C上,A,B为椭圆C的左、右顶点.
(1)求椭圆C的方程:
(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中是过抛物线焦点的两条弦,且其焦点,点轴上一点,记,其中为锐角.

(1)求抛物线方程;
(2)如果使“蝴蝶形图案”的面积最小,求的大小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的方程为,双曲线的两条渐近线为.过椭圆的右焦点作直线,使,又交于点,设与椭圆的两个交点由上至下依次为.

(1)若的夹角为,且双曲线的焦距为,求椭圆的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,已知中心在原点,离心率为的椭圆E的一个焦点为圆的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为的直线,当直线都与圆相切时,求P点坐标.

查看答案和解析>>

同步练习册答案