精英家教网 > 高中数学 > 题目详情
△ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件:
(1)(a+b+c)(a+b-c)=3ab
(2)sinA=2cosBsinC
(3)b=acosC,c=acosB
(4)
有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.
请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题   
【答案】分析:若(1)(2)→甲,由(1)利用平方差及完全平方公式变形得到关于a,b及c的关系式,利用余弦定理表示出cosC,把得到的关系式代入求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值求出C为60°,再利用诱导公式及两角和与差的正弦函数公式化简(2)中的等式,得到sin(B-C)=0,由B和C为三角形的内角,得到B-C的范围,利用特殊角的三角函数值得到B=C,从而得到三角形为等边三角形;
若(2)(4)→乙,利用诱导公式及两角和与差的正弦函数公式化简(2)中的等式,得到sin(B-C)=0,由B和C为三角形的内角,得到B-C的范围,利用特殊角的三角函数值得到B=C,再利用正弦定理化简(4)中的等式,得到a=b,利用勾股定理的逆定理得到∠A为直角,从而得到三角形为等腰直角三角形;
若(3)(4)→乙,利用正弦定理化简(4)中的等式,得到a=b,利用勾股定理的逆定理得到∠A为直角,再利用正弦定理化简(3)中的两等式,分别表示出sinA,两者相等再利用二倍角的正弦函数公式,得到sin2B=sin2C,由B和C都为三角形的内角,可得B=C,从而得到三角形为等腰直角三角形.三者选择一个即可.
解答:解:由(1)(2)为条件,甲为结论,得到的命题为真命题,理由如下:
证明:由(a+b+c)(a+b-c)=3ab,变形得:
a2+b2+2ab-c2=3ab,即a2+b2-c2=ab,
则cosC==,又C为三角形的内角,
∴C=60°,
又sinA=sin(B+C)=sinBcosC+cosBsinC=2cosBsinC,
即sinBcosC-cosBsinC=sin(B-C)=0,
∵-π<B-C<π,
∴B-C=0,即B=C,
则A=B=C=60°,
∴△ABC是等边三角形;
以(2)(4)作为条件,乙为结论,得到的命题为真命题,理由为:
证明:化简得:sinA=sin(B+C)=sinBcosC+cosBsinC=2cosBsinC,
即sinBcosC-cosBsinC=sin(B-C)=0,
∵-π<B-C<π,
∴B-C=0,即B=C,
∴b=c,
由正弦定理===2R得:
sinA=,sinB=,sinC=
代入得:
2R•(-)=(a-b)•
整理得:a2-b2=ab-b2,即a2=ab,
∴a=b,
∴a2=2b2,又b2+c2=2b2
∴a2=b2+c2
∴∠A=90°,
则三角形为等腰直角三角形;
以(3)(4)作为条件,乙为结论,得到的命题为真命题,理由为:
证明:由正弦定理===2R得:
sinA=,sinB=,sinC=
代入得:
2R•(-)=(a-b)•
整理得:a2-b2=ab-b2,即a2=ab,
∴a=b,
∴a2=2b2,又b2+c2=2b2
∴a2=b2+c2
∴∠A=90°,
又b=acosC,c=acosB,
根据正弦定理得:sinB=sinAcosC,sinC=sinAcosB,
=,即sinBcosB=sinCcosC,
∴sin2B=sin2C,又B和C都为三角形的内角,
∴2B=2C,即B=C,
则三角形为等腰直角三角形.
故答案为:(1)(2)→甲 或 (2)(4)→乙 或 (3)(4)→乙
点评:此题考查了三角形形状的判断,涉及的知识有正弦、余弦定理,两角和与差的正弦函数公式,勾股定理,等边三角形的判定,等腰三角形的判定与性质,属于条件开放型题,是一类背景新、解题活、综合性强、无现成模式的题型.解答此类题需要运用观察、类比、猜测、归纳、推理等多种探索活动寻求解题策略.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,A+C=2B
,则sinC=(  )
A、0B、2C、1D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个内角A、B、C的对边分别是a,b,c,给出下列命题:
①若sinBcosC>-cosBsinC,则△ABC一定是钝角三角形;
②若sin2A+sin2B=sin2C,则△ABC一定是直角三角形;
③若bcosA=acosB,则△ABC为等腰三角形;
④在△ABC中,若A>B,则sinA>sinB;
其中正确命题的序号是
②③④
②③④
.(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A,B,C的对边分别为a,b,c,且a,b,c成等比数列
(1)若sinC=2sinA,求cosB的值;
(2)求角B的最大值.并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC的三个内角A,B,C的对边,
m
=(-
3
,sinA),
n
=(cosA,1)
,且
m
n

(Ⅰ)求角A的大小;
(Ⅱ)若a=2,△ABC的面积为
3
,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,B=60°,则sinC=
1
1

查看答案和解析>>

同步练习册答案