精英家教网 > 高中数学 > 题目详情
如图,在四棱锥E-ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,求证:
(1)AE∥平面BDF;
(2)平面BDF⊥平面BCE.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(1)设AC∩BD=G,连结FG,易知G是AC的中点,可证FG∥AE,从而可证AE∥平面BDF.
(2)由BC⊥平面ABE.可证BC⊥AE,由AE⊥平面BCE,可证FG⊥平面BCE,从而可证平面BDF⊥平面BCE.
解答: 证明:(1)设AC∩BD=G,连结FG,易知G是AC的中点,
因为 F是EC中点,所以 在△ACE中,FG∥AE.…(2分)
因为 AE?平面BDF,FG?平面BDF,
所以 AE∥平面BDF. …(6分)

(2)因为 平面ABCD⊥平面ABE,BC⊥AB,
平面ABCD∩平面ABE=AB,所以 BC⊥平面ABE.…(8分)
因为 AE?平面ABE,所以 BC⊥AE.…(10分)
又AE⊥BE,BC∩BE=B,所以 AE⊥平面BCE,又FG∥AE,
所以FG⊥平面BCE,…(12分)
因为 FG?平面BDF,所以平面BDF⊥平面BCE.…(14分)
点评:本题主要考察了平面与平面垂直的判定,直线与平面平行的判定,连接GF,证明FG∥AE是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x>1},B={x|x2-2x-3<0},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,M,N是线段BC,CD的中点,若
AC
=m
BN
+n
DM
,则m+n=(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P={x|2kπ≤x≤(2k+1)π,k∈z},Q={x|-4≤x≤4},则P∩Q=(  )
A、∅
B、{x|-4≤x≤-π或0≤x≤π}
C、{x|-4≤x≤4}
D、{x|0≤x≤π}

查看答案和解析>>

科目:高中数学 来源: 题型:

导函数的最大值是原函数的最小值.
 
(判断对错)

查看答案和解析>>

科目:高中数学 来源: 题型:

直三棱柱ABC-A1B1C1中,CB1⊥BA1,∠CAB=
π
2
,AB=2,BC=
5
,求三棱锥C1-ABA1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

某城市出租车的计价方式如下:乘坐里程在3km以内(含3km),只付起步价8元;超过3km至6km,每公里2元;超过6km,每公里再加收20%车费,如果价格y(元)与里程x(km)的函数关系为y=
8,0<x≤3
2x+2,3<x≤6
2.4x-6.4,x>6

(1)某人打的里程表显示为5km,应付多少钱?
(2)某人付了39.2元钱,乘了几公里?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=
-2x+a
2x+1+2
(a为实常数)是奇函数g(x)=2(x-x2
(Ⅰ)求a的值,判断并证明函数f(x)的单调性;
(Ⅱ)若对任意的t∈[-1,4],不等式f(g(t)-1)+f(8t+m)<0(m为实常数)都成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x+y≥2
x-y≤2
0≤y≤3
则z=2x-y的最小值是(  )
A、5
B、
5
2
C、-5
D、-
5
2

查看答案和解析>>

同步练习册答案