设函数
,
.
(1)若曲线
与
在它们的交点
处有相同的切线,求实数
、
的值;
(2)当
时,若函数
在区间
内恰有两个零点,求实数
的取值范围;
(3)当
,
时,求函数
在区间
上的最小值.
(1)
;(2)
;(3)
.
解析试题分析:(1)从条件“曲线
科目:高中数学
来源:
题型:解答题
已知函数
科目:高中数学
来源:
题型:解答题
已知函数
科目:高中数学
来源:
题型:解答题
某地区注重生态环境建设,每年用于改造生态环境总费用为
科目:高中数学
来源:
题型:解答题
已知函数
科目:高中数学
来源:
题型:解答题
已知函数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
与
在它们的交点
处有相同的切线”得到
以及
,从而列有关
、
的二元方程组,从而求出
与
的值;(2)将
代入函数
的解析式,利用导数分析函数
在区间
上的单调性,确定函数
在区间
上是单峰函数后,然后对函数
的端点值与峰值进行限制,列不等式组解出
的取值范围;(3)将
,
代入函数
的解析式,并求出函数
的单调区间,对函数
的极值点是否在区间
内进行分类讨论,结合函数的单调性确定函数
在区间
上的最小值.
试题解析:(1)因为
,
,所以
,
.
因为曲线
与
在它们的交点
处有相同切线,
所以
,且
,
即
,且
,解得
,
;
(2)当
时,
,
所以
,
令
,解得
,
,
当
变化时,
、
的变化情况如下表:![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
<
![]()
![]()
大舍文化指点中考系列答案
大舍文化中考试题精编系列答案
超能学典中考全面出击系列答案
天利38套5加15年真题加1年模拟试题系列答案
宇轩图书中考真题加名校模拟详解详析系列答案
决胜新中考学霸宝典系列答案
天利38套常考基础题系列答案
智乐文化中考全真模拟试卷尖子生热身用系列答案
超能学典中考高分突破系列答案
逗号图书中考压轴题专练系列答案
(
为常数),其图象是曲线
.
(1)当
时,求函数
的单调减区间;
(2)设函数
的导函数为
,若存在唯一的实数
,使得
与
同时成立,求实数
的取值范围;
(3)已知点
为曲线
上的动点,在点
处作曲线
的切线
与曲线
交于另一点
,在点
处作曲线
的切线
,设切线
的斜率分别为
.问:是否存在常数
,使得
?若存在,求出
的值;若不存在,请说明理由.
.
(1)当
时,求函数
在
上的最大值;
(2)令
,若
在区间
上不单调,求
的取值范围;
(3)当
时,函数
的图象与
轴交于两点
,且
,又
是
的导函数.若正常数
满足条件
.证明:
.
亿元,其中用于风景区改造为
亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用
随每年改造生态环境总费用
增加而增加;②每年改造生态环境总费用至少
亿元,至多
亿元;③每年用于风景区改造费用
不得低于每年改造生态环境总费用
的15%,但不得高于每年改造生态环境总费用
的25%.
若
,
,请你分析能否采用函数模型y=
作为生态环境改造投资方案.
,
.![]()
(Ⅰ)若曲线
在
与
处的切线相互平行,求
的值及切线斜率;
(Ⅱ)若函数
在区间
上单调递减,求
的取值范围;
(Ⅲ)设函数
的图像C1与函数
的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.
,函数
.
(I)试求f(x)的单调区间。
(II)若f(x)在区间
上是单调递增函数,试求实数a的取值范围:
(III)设数列
是公差为1.首项为l的等差数列,数列
的前n项和为
,求证:当
时,
.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号