£¨2012•»ÆÆÖÇø¶þÄ££©ÒÑÖªº¯Êýy=f£¨x£©ÊǶ¨ÒåÓòΪRµÄżº¯Êý£¬ÇÒ¶Ôx¡ÊR£¬ºãÓÐf£¨1+x£©=f£¨1-x£©£®ÓÖµ±x¡Ê[0£¬1]ʱ£¬f£¨x£©=x£®
£¨1£©µ±x¡Ê[-1£¬0]ʱ£¬Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÇóÖ¤£ºº¯Êýy=f£¨x£©£¨x¡ÊR£©ÊÇÒÔT=2ΪÖÜÆÚµÄÖÜÆÚº¯Êý£»
£¨3£©½â´ð±¾Ð¡Ì⿼ÉúÖ»Ðè´ÓÏÂÁÐÈý¸öÎÊÌâÖÐÑ¡ÔñÒ»¸öд³ö½áÂÛ¼´¿É£¨ÎÞÐèд½âÌâ²½Ö裩£®×¢Ò⣺¿¼ÉúÈôÑ¡Ôñ¶àÓÚÒ»¸öÎÊÌâ½â´ð£¬Ôò°´·ÖÊý×îµÍÒ»¸öÎÊÌâµÄ½â´ðÕýÈ·Óë·ñ¸ø·Ö£®
¢Ùµ±x¡Ê[2n-1£¬2n]£¨n¡ÊZ£©Ê±£¬Çóf£¨x£©µÄ½âÎöʽ£®
¢Úµ±x¡Ê[2n-1£¬2n+1]£¨ÆäÖÐnÊǸø¶¨µÄÕýÕûÊý£©Ê±£¬Èôº¯Êýy=f£¨x£©µÄͼÏóÓ뺯Êýy=kxµÄͼÏóÓÐÇÒ½öÓÐÁ½¸ö¹«¹²µã£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®
¢Ûµ±x¡Ê[0£¬2n]£¨nÊǸø¶¨µÄÕýÕûÊýÇÒn¡Ý3£©Ê±£¬Çóf£¨x£©µÄ½âÎöʽ£®