精英家教网 > 高中数学 > 题目详情
设{an}(n∈N+)是等差数列,Sn为等差数列{an}的前n项和,且S11<0,S12>0,则数列{an}前(  )项的和最小.
分析:由求和公式和等差数列的性质可得,等差数列{an}的前6项为负数,从第7选项开始为正数,可得结论.
解答:解:在等差数列{an}中,
由S11=
11(a1+a11)
2
<0,可得得a1+a11<0,
由等差数列的性质可得a1+a11=2a6<0,∴a6<0.
同理由S12=
12(a1+a12)
2
>0,得a1+a12>0,
则由等差数列的性质可得a6+a7=a1+a12>0.
∵a6<0,a6+a7>0,∴a7>0.
故可知等差数列{an}的前6项为负数,从第7选项开始为正数,
∴使得Sn达到最小值的n是6.
故选C
点评:本题考查等差数列的性质和求和公式,从数列自身的变化趋势入手是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an},{bn}是两个数列,M(1,2),An(2,an),Bn(
n-1
n
2
n
)
为直角坐标平面上的点.对n∈N*,若三点M,An,B共线,
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:log2cn=
a1b1+a2b2+…+anbn
a1+a2+…+an
,其中{cn}是第三项为8,公比为4的等比数列.求证:点列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一条直线上;
(3)记数列{an}、{bn}的前m项和分别为Am和Bm,对任意自然数n,是否总存在与n相关的自然数m,使得anBm=bnAm?若存在,求出m与n的关系,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-2x2+x+
1
2

(1)求证:f(x)在R上是增函数;
(2)设a1=0,an+1=
1
2
f(an)
 (n∈N+),b1=
1
2
,bn+1=
1
2
f(bn)
 (n∈N+).
①用数学归纳法证明:0<an<bn
1
2
(n>1,n∈N);
②证明:bn+1-an+1
bn-an
2
 (n∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=2,an+1=
2n+1an
(n+
1
2
)an+2n
(n∈N*)

(1)设bn=
2n
an
,求数列{bn}的通项公式;
(2)设cn=
1
n(n+1)an+1
,数列{cn}的前n项和为Sn,求出Sn并由此证明:
5
16
Sn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•扬州模拟)已知等差数列{an}的各项均为正数,其前n项和为Sn,首项a1=1.
(Ⅰ)若
S1
+
S3
=2
S2
,求S5
(Ⅱ)若数列{an}中存在两两互异的正整数m、n、p同时满足下列两个条件:①m+p=2n;②
Sm
+
Sp
=2
Sn
,求数列的通项an
(Ⅲ)对于(Ⅱ)中的数列{an},设bn=3•(
1
2
)an
(n∈N*),集合Tn={bi•bj|1≤i≤j≤n,i,j∈N*},记集合Tn中所有元素之和Bn,试问:是否存在正整数n和正整数k,使得不等式
1
bnBn-k
+
1
k-bn+1Bn+1
>0
成立?若存在,请求出所有n和k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+y)=f(x)•f(y),且f(1)=
1
2

(1)当x∈N+时,求f(n)的表达式;
(2)设an=nf(n)
 (n∈N+)
,求证:a1+a2+…+an<2;
(3)设bn=
nf(n+1)
f(n)
 &(n∈N+),Sn=b1
+b2+…+bn
,求
lim
n→∞
(
1
S1
+
1
S2
+…+
1
Sn
)

查看答案和解析>>

同步练习册答案