函数
.
(1)若
,函数
在区间
上是单调递增函数,求实数
的取值范围;
(2)设
,若对任意
恒成立,求
的取值范围.
(1)
;(2)
.
解析试题分析:(1)由题意可得,当
时,
在区间
上是单调递增函数等价于对于任意的
,
(不妨
),
恒成立,从而将问题转化为![]()
在
恒成立,即有
,
在
上恒成立,而的
,
,且
,故有
,因此分析可得要使
恒成立,只需
,即有实数
的取值范围是
;(2)由题意分析可得问题等价于在
上,
,从而可将问题转化为在
上,求二次函数
的最大值与最小值,因此需要对二次函数的对称轴
分以下四种情况讨论:①当
,即
;②当
,即
;③当
,即
;④当
,即
,结合二次函数的图像和性质,可分别得到
在以上四种情况下的最大值与最小值,从而可得实数
的取值范围是
.
试题解析:(1)
时,
,
任设
,![]()
, ..2分
,
∵函数
在
上是单调递增函数,∴恒有
,..........3分
∴恒有
,即恒有
, .4分
当
时,
,∴
,∴
,即实数
的取值范围是
..6分
(2)当
时
,
对任意
有
恒成立等价于
在
上的最大值与最小值之差
..7分
当
,即
时,
在
上单调递增,
∴
,
,∴
,与题设矛盾; ..9分
当
,即![]()
科目:高中数学 来源: 题型:解答题
用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用一个单位的水可洗掉蔬菜上残留农药的
,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用
单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数
.
⑴试规定
的值,并解释其实际意义;
⑵试根据假定写出函数
应满足的条件和具有的性质;
⑶设
,现有
单位量的水,可以清洗一次,也可以把水平均分成两份后清洗两次.试问用那种方案清洗后蔬菜上残留的农药量比较少?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某渔业公司年初用49万元购买一艘捕鱼船,第一年各种费用6万元,以后每年都增加2万元,每年捕鱼收益25万元.
(1)问第几年开始获利?
(2)若干年后,有两种处理方案:①年平均获利最大时,以18万元出售该渔船;②总纯收入获利最大时,以9万元出售该渔船.问哪种方案最合算?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
是定义在
上的函数,且
,对任意
,若经过点
,
的直线与
轴的交点为
,则称
为
关于函数
的平均数,记为
,例如,当
时,可得
,即
为
的算术平均数.
当
时,
为
的几何平均数;
当
时,
为
的调和平均数
;
(以上两空各只需写出一个符合要求的函数即可)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2014·郑州模拟)已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a≤0.
(1)求f(x)的极值.
(2)若存在区间M,使f(x)和g(x)在区间M上具有相同的单调性,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com