精英家教网 > 高中数学 > 题目详情

某渔业公司年初用49万元购买一艘捕鱼船,第一年各种费用6万元,以后每年都增加2万元,每年捕鱼收益25万元.
(1)问第几年开始获利?
(2)若干年后,有两种处理方案:①年平均获利最大时,以18万元出售该渔船;②总纯收入获利最大时,以9万元出售该渔船.问哪种方案最合算?

(1)渔业公司第3年开始获利.(2)方案①较合算.

解析试题分析:(1)由题意列出获利y与年份n的函数关系,然后求解不等式得到n的范围,根据n是正的自然数求得n的值;
(2)用获利除以年份得到年平均获利,利用不等式求出最大值,求出获得的总利润,利用配方法求出获得利润的最大值,求出总获利,比较后即可得到答案.
试题解析:(1)第n年开始获利,设获利为y万元,则
y=25n-[6n+×2]-49=-n2+20n-49   2分
由y=-n2+20n-49>0得10-<n<10+        4分
又∵n∈N*,∴n=3,4
∴n=3时,即该渔业公司第3年开始获利.   5分
(2)方案①:年平均获利为=-n-+20≤-2+20=6(万元)      7分
当n=7时,年平均获利最大,若此时卖出,共获利6×7+18=60(万元)      8分
方案②:y=-n2+20n-49=-(n-10)2+51
当且仅当n=10时,即该渔业公司第10年总额最大,若此时卖出,共获利51+9=60万元   11分
因为两种方案获利相等,但方案②所需的时间长,所以方案①较合算.    12分
考点:函数模型的选择及应用;简单的建模思想;利用基本不等式求最值;配方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某种商品,现在定价p元,每月卖出n件,设定价上涨x成,每月卖出数量减少y成,每月售货总金额变成现在的z倍.
(1)用x和y表示z;
(2)设x与y满足y=kx(0<k<1),利用k表示当每月售货总金额最大时x的值;
(3)若y=x,求使每月售货总金额有所增加的x值的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.
(1) 判断函数是否为 “()型函数”,并说明理由;
(2) 若函数是“()型函数”,求出满足条件的一组实数对
(3)已知函数是“型函数”,对应的实数对,当时,,若当时,都有,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数同时满足以下三个条件:
①对任意的,总有

③当,且时,成立.
称这样的函数为“友谊函数”.
请解答下列各题:
(1)已知为“友谊函数”,求的值;
(2)函数在区间上是否为“友谊函数”?请给出理由;
(3)已知为“友谊函数”,假定存在,使得,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.
(1)若,函数在区间上是单调递增函数,求实数的取值范围;
(2)设,若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,ABCD(AB>AD)为长方形薄板,沿AC折叠后,AB′交DC于点P.当△ADP的面积最大时最节能,凹多边形ACB′PD的面积最大时制冷效果最好.

(1)设AB=x(米),用x表示图中DP的长度,并写出x的取值范围;
(2)若要求最节能,应怎样设计薄板的长和宽?
(3)若要求制冷效果最好,应怎样设计薄板的长和宽?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 
(1)若的最小值记为,求的解析式.
(2)是否存在实数同时满足以下条件:①;②当的定义域为[]时,值域为[];若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知幂函数f(x)图象过点(8,4),则f(x)的值域为        

查看答案和解析>>

同步练习册答案