精英家教网 > 高中数学 > 题目详情
已知F1,F2是双曲线的两个焦点,过F2作垂直于实轴的直线PQ交双曲线于P,Q两点,若∠PF1Q=
π
2
,则双曲线的离心率e等于(  )
分析:根据题设条件我们知道PQ=
2b2
a
,|F1F2|=2c,|QF1|=
b2
a
,因为∠PF2Q=90°,则2(
b4
a2
+4c2)=
4b4
a2
,据此可以推导出双曲线的离心率.
解答:解:由题意可知通径|PQ|=
2b2
a
,|F1F2|=2c,|QF1|=
b2
a

∵∠PF2Q=90°,∴b4=4a2c2
∵c2=a2+b2,∴c4-6a2c2+a4=0,∴e4-6e2+1=0
∴e2=3+2
2
或e2=3-2
2
(舍去)
∴e=1+
2

故选C.
点评:本题主要考查了双曲线的简单性质,考查计算能力.这道题数量间的关系比较繁琐,推导过程中要多一点耐心.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2分别为双曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,P为双曲线左支上任一点,若
|PF2|2
|PF1|
的最小值为8a,则双曲线的离心率e的取值范围是(  )
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是双曲
x2
9
-
y2
16
=1
的左、右两个焦点,点P是双曲线上一点,且|PF1|.|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知F1、F2是双曲数学公式的左、右两个焦点,点P是双曲线上一点,且|PF1|.|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源:2013年陕西省西安市西工大附中高考数学一模试卷(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中数学 来源:2012年陕西省西安市西工大附中高考数学四模试卷(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步练习册答案