精英家教网 > 高中数学 > 题目详情
等差数列{an}中,首项a1=1,公差d≠0,前n项和为Sn,已知数列ak1ak2ak3,…,akn,…成等比数列,其中k1=1,k2=2,k3=5.
(Ⅰ)求数列{an},{kn}的通项公式;
(Ⅱ)令bn=
an2kn-1
,数列{bn}的前n项和为Tn.若存在一个最小正整数M,使得当n>M时,Sn>4Tn(n∈N*)恒成立,试求出这个最小正整数M的值.
分析:(1)根据题意,有a22=a1•a5,计算可得等差数列的公差,又由首项a1=1,可得数列{an}的通项公式,结合题意,可得等比数列ak1,ak2,ak3,…,akn,…的公比q=3,进而可得akn=3n-1,根据{an}的通项公式可得2kn-1=3n-1,进而可得{kn}的通项公式;
(Ⅱ)根据bn=
an
2kn-1
,利用错位相减法可求得数列{bn}的前n项和为Tn,确定Tn单调递增,关键Sn=n2在n∈N*时单调递增,即可求得结论.
解答:解:(Ⅰ)由a22=a1•a5,得(1+d)2=1•(1+4d),解得d=2,
∴an=2n-1,
∴akn=2kn-1,
在等比数列中,公比q=
a2
a1
=3,∴akn=3n-1
∴2kn-1=3n-1,解得kn=
3n-1+1
2

(Ⅱ)bn=
an
2kn-1
=
2n-1
3n-1
,则Tn=
1
30
+
3
31
+…+
2n-1
3n-1

1
3
Tn=
1
31
+…+
2n-3
3n-1
+
2n-1
3n

两式相减得:
2
3
Tn=1+
2
31
+…+
2
3n-1
-
2n-1
3n
=2-
2n+2
3n

∴Tn=3-
n+1
3n-1

∵Tn+1-Tn=
2n+1
3n
>0,
∴Tn单调递增,∴1≤Tn<3.
Sn=n2在n∈N*时单调递增.
且S1=1,4T1=4;S2=4,4T2=8;S3=9,4T3=
92
9
;S4=16>12,4T4<12;….
故当n>3时,Sn>4Tn恒成立,则所求最小正整数M的值为3.
点评:本题考查等比数列的性质以及错位相减法的应用,错位相减法是重要的数列求和方法,需要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案