精英家教网 > 高中数学 > 题目详情



        解法一:设所求的椭圆为:

代入化简为:



解法二:设直线与椭圆相义于两点

由题设知这是中心在原点,焦点在y轴的椭圆。
直线与椭圆相交所得弦的中点横坐标已知是建立含待定系数a,b的一个方程,另一个是解方程组便可。
另外也可以先设出直线与椭圆相交结的端点的坐标,由于两点在椭圆上,故而坐标满足椭圆方程,然后两式相减,若则:
(直线的斜率)也可求出待定系数的值。
说明:本题解法一是规范的待定系数法的解法。
解法二是利用曲线与方程的关系,化简得到这样两个“平方差”其中一个平方差这两个因式表示的分别是弦的中点横坐标的2倍,又因直线中斜率为2,因而直线与椭圆交点中,,为些用去除等式的两边时,便得到的式子,而这正是直线l的斜率是已知的,为此较容易的得到a,b的一个方程,此法涉及到直线与圆锥曲线相交弦的中点有关问题时(若直线斜率未知也可以用此法求点)使用较简捷。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

的半径为的定圆的两互相垂直的直径,作动弦,引,且交,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知⊙Q:(x-1)2+y2=16,动⊙M过定点P(-1,0)且与⊙Q相切,则M点的轨迹方程是:                    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线的焦点与双曲线的右焦点重合,则的值为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线与抛物线C交于两点,且,且为常数).过弦AB的中点M作平行于轴的直线交抛物线于点D,连结AD、   BD得到.
(1)求证:
(2)求证:的面积为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


A.B.0C.D.不存在满足上述条件的a

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线与椭圆有共同的焦点,点是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线离心率为2,有一个焦点与抛物线的焦点重
合,则mn的值为                            (   )
A.B.C.D.

查看答案和解析>>

同步练习册答案