精英家教网 > 高中数学 > 题目详情
(选做题)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=3
5
,BD=4,则线段CF的长为
 
考点:与圆有关的比例线段
专题:直线与圆
分析:由切割线定理得到AE2=EB•ED=EB(EB+BD),求出EB=5,由已知条件推导出四边形AEBC是平行四边形,从而得到AC=AB=BE=5,BC=AE=3
5
,由△AFC∽△DFB,能求出CF的长.
解答: 解:∵AB=AC,AE=3
5
,BD=4,
梯形ABCD中,AC∥BD,BD=4,
由切割线定理可知:AE2=EB•ED=EB(EB+BD),
即45=BE(BE+4),解得EB=5,
∵AC∥BD,∴AC∥BE,
∵过点A作圆的切线与DB的延长线交于点E,
∴∠BAE=∠C,
∵AB=AC,∴∠ABC=∠C,
∴∠ABC=∠BAE,∴AE∥BC,
∴四边形AEBC是平行四边形,
∴EB=AC,∴AC=AB=BE=5,
∴BC=AE=3
5

∵△AFC∽△DFB,∴
AC
BD
=
CF
FB
,即
5
4
=
CF
3
5
-CF

解得CF=
5
5
3
 

故答案为:
5
5
3
点评:本题考查与圆有关的线段长的求法,是中档题,解题时要认真审题,注意切割线定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
m+1
+y2=1
的两个焦点是F1(-c,0),F2(c,0)(c>0).
(Ⅰ)若直线y=x+2与椭圆C有公共点,求m的取值范围;
(Ⅱ)设E是(I)中直线与椭圆的一个公共点,求|EF1|+|EF2|取得最小值时,椭圆的方程;
(Ⅲ)已知斜率为k(k≠0)的直线l与(Ⅱ)中椭圆交于不同的两点A,B,点Q满足
AQ
=
QB
NQ
AB
=0
,其中N为椭圆的下顶点,求直线l在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,过椭圆G右焦点F的直线m:x=1与椭圆G交于点M(点M在第一象限).
(Ⅰ)求椭圆G的方程;
(Ⅱ)已知A为椭圆G的左顶点,平行于AM的直线l与椭圆相交于B,C两点.判断直线MB,MC是否关于直线m对称,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,焦点在x轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是直线x=-4与x轴的交点,过点P的直线l与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O过椭圆
x2
6
+
y2
2
=1
的两焦点且关于直线x-y+1=0对称,则圆O的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足条件
x+y≤1
y≥0
x-y≤0
则z=(x-1)2+y2的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足条件
x≥0
y≤x
2x+y-6≤0
,若z=x+3y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①函数f(-x+2)与y=f(x-2)的图象关于y轴对称
②若函数f(x)=ex,则对任意的x1,x2∈R,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

③若函数f(x)=loga|x|(a>0,a≠1)在(0,+∞)上单调递增,则f(-2)>f(a+1)
④若函数f(x+2013)=x2-2x-1(x∈R),则函数的最小值为-2
其中正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足不等式组
x≥0
y≤x
2x+y+k≤0
(k
为常数),且x+3y的最大值为12,则实数k=(  )
A、9B、-9C、-12D、12

查看答案和解析>>

同步练习册答案