精英家教网 > 高中数学 > 题目详情
已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,过椭圆G右焦点F的直线m:x=1与椭圆G交于点M(点M在第一象限).
(Ⅰ)求椭圆G的方程;
(Ⅱ)已知A为椭圆G的左顶点,平行于AM的直线l与椭圆相交于B,C两点.判断直线MB,MC是否关于直线m对称,并说明理由.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由已知条件推导出c=1,
c
a
=
1
2
,由此能求出椭圆的方程.
(Ⅱ)由已知条件得A(-2,0),M(1,
3
2
)
,设直线l:y=
1
2
x+n
,n≠1.设B(x1,y1),C(x2,y2),由
x2
4
+
y2
3
=1
y=
1
2
x+n
,得x2+nx+n2-3=0.再由根的判别式和韦达定理结合已知条件能求出直线MB,MC关于直线m对称.
解答: 解:(Ⅰ)∵椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2

过椭圆G右焦点F的直线m:x=1与椭圆G交于点M(点M在第一象限),
∴c=1,(1分)
c
a
=
1
2
,解得a=2,(2分)
∴b2=a2-c2=3,(3分)
∴椭圆的方程为
x2
4
+
y2
3
=1
.(4分)
(Ⅱ)∵A为椭圆G的左顶点,∴A(-2,0),M(1,
3
2
)
,(6分)
∴由题意可设直线l:y=
1
2
x+n
,n≠1.(7分)
设B(x1,y1),C(x2,y2),
x2
4
+
y2
3
=1
y=
1
2
x+n
,得x2+nx+n2-3=0.
由题意得△=n2-4(n2-3)=12-3n2>0,
即n∈(-2,2)且n≠1.(8分)
x1+x2=-n,x1x2=n2-3.(9分)
kMB+kMC=
y1-
3
2
x1-1
+
y2-
3
2
x2-1
,(10分)
=
1
2
x1+n-
3
2
x1-1
+
1
2
x2+n-
3
2
x2-1
=1+
n-1
x1-1
+
n-1
x2-1
=1+
(n-1)(x1+x2-2)
x1x2-(x1+x2)+1

=1-
(n-1)(n+2)
n2+n-2
=0
,(13分)
所以直线MB,MC关于直线m对称.(14分)
点评:本题考查椭圆方程的求法,考查两条直线是否关于已知直线对称的判断,解题时要认真审题,注意根的判别式和韦达定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列命题:
①终边相同的角一定相等
②第一象限角一定是锐角
③小于90°的角都是锐角
④第一象限的角是正角
⑤第二象限的角比第一象限的角大
⑥三角形的内角是象限角
其中正确的命题个数是(  )
A、0B、2C、3D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y=x2+m过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,且和椭圆有三个交点,以这三个交点为顶点的三角形面积为1,求a、b、m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-ax+(a-1)lnx,a>1

(1)求f(x)的单调区间;
(2)若g(x)=(2-a)x-lnx,f(x)≥g(x)在区间[e,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=
5
5
,过F1的直线交椭圆于M、N两点,且△MNF2的周长为4
5

(Ⅰ)求椭圆E的方程;
(Ⅱ)设AB是过椭圆E中心的任意弦,P是线段AB的垂直平分线与椭圆E的一个交点,求△APB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,焦点F与双曲线x2-
y2
4
=1
的右顶点重合.
(1)求抛物线的方程;
(2)若直线l经过焦点F,且倾斜角为60°,与抛物线交于A、B两点,求:弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x+1)2
(1)当1≤x≤m时,不等式f(x-3)≤x恒成立,求实数m的最大值;
(2)在曲线y=f(x+t)上存在两点关于直线y=x对称,求t的取值范围;
(3)在直线y=-
1
4
上取一点P,过点P作曲线y=f(x+t)的两条切线l1、l2,求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=3
5
,BD=4,则线段CF的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+a2+a3=3,a18+a19+a20=87,则该数列前20项的和为
 

查看答案和解析>>

同步练习册答案