精英家教网 > 高中数学 > 题目详情
已知抛物线的顶点在原点,焦点F与双曲线x2-
y2
4
=1
的右顶点重合.
(1)求抛物线的方程;
(2)若直线l经过焦点F,且倾斜角为60°,与抛物线交于A、B两点,求:弦长|AB|.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)由双曲线得右顶点坐标,从而可得抛物线的焦点坐标,进而写出抛物线方程;
(2)直线的方程与抛物线y2=4x的方程组成方程组,消去y得到关于x的二次方程,利用根与系数的关系结合抛物线的定义即可求线段AB的长.
解答: 解:(1)双曲线x2-
y2
4
=1
的右顶点为(1,0),
∵抛物线的焦点F与双曲线x2-
y2
4
=1
的右顶点重合,
∴F(1,0).
设抛物线的方程为:y2=2px(p>0)
p
2
=1,∴p=2,
∴抛物线方程是 y2=4x;
(2)直线l方程为y=
3
(x-1),代入方程y2=4x,得3(x-1)2=4x,化简得3x2-10x+3=0.
设A(x1,y1),B(x2,y2),∴x1+x2=
10
3

于是|AB|=|AF|+|BF|=x1+x2+2=
16
3
点评:本题考查双曲线的简单性质及抛物线的标准方程,考查直线与圆锥曲线的综合问题和方程的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={1,2,3},N={1,2,3,4}.定义映射f:M→N,则从中任取一个映射满足由点A(1,f(1)),B(2,f(2)),C(3,f(3))构成△ABC且AB=BC的概率为(  )
A、
3
32
B、
5
32
C、
3
16
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx,g(x)=x2.其中x∈R.
(Ⅰ)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距离;
(Ⅱ)若f(x)≤g(x)-1对任意x>0恒成立,求实数a的值;
(Ⅲ)当a<0时,对于函数h(x)=f(x)-g(x)+1,记在h(x)图象上任取两点A、B连线的斜率为kAB,若|kAB|≥1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx(a≠0),且f(x+1)为偶函数,定义:满足f(x)=x的实数x称为函数f(x)的“不动点”,若函数f(x)有且仅有一个不动点.
(1)求f(x)的解析式;
(2)若函数g(x)=f(x)+kx2在(0,4)上是增函数,求实数k的取值范围;
(3)是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域为[3m,3n]?若存在,请求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,过椭圆G右焦点F的直线m:x=1与椭圆G交于点M(点M在第一象限).
(Ⅰ)求椭圆G的方程;
(Ⅱ)已知A为椭圆G的左顶点,平行于AM的直线l与椭圆相交于B,C两点.判断直线MB,MC是否关于直线m对称,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,两个焦点分别为F1和F2,椭圆C上一点到F1和F2的距离之和为12.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 设点B是椭圆C 的上顶点,点P,Q是椭圆上;异于点B的两点,且PB⊥QB,求证直线PQ经过y轴上一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,焦点在x轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是直线x=-4与x轴的交点,过点P的直线l与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足条件
x+y≤1
y≥0
x-y≤0
则z=(x-1)2+y2的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,不等式组
x≤a
|y-2|≤x
表示的平面区域的面积为4,则实数a的值是
 

查看答案和解析>>

同步练习册答案