精英家教网 > 高中数学 > 题目详情
7.为了解某社区居民购买水果和牛奶的年支出费用与购买食品的年支出费用的关系,随机调查了该社区5户家庭,得到如下统计数据表:
购买食品的年支出费用x(万元)2.092.152.502.842.92
购买水果和牛奶的年支出费用y(万元)1.251.301.501.701.75
根据上表可得回归直线方程$\hat y=\hat bx+\hat a$,其中$\hat b=0.85,\hat a=\overline y-\hat b\overline x$,据此估计,该社区一户购买食品的年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为(  )
A.1.79万元B.2.55万元C.1.91万元D.1.94万元

分析 计算$\overline{x}$、$\overline{y}$,求出回归系数$\stackrel{∧}{a}$,写出回归方程,利用回归方程计算x=3.00时$\stackrel{∧}{y}$的值即可.

解答 解:计算$\overline{x}$=$\frac{1}{5}$×(2.09+2.15+2.50+2.84+2.92)=2.50,
$\overline{y}$=$\frac{1}{5}$×(1.25+1.30+1.50+1.70+1.75)=1.50,
且回归直线方程$\hat y=\hat bx+\hat a$中$\hat b=0.85,\hat a=\overline y-\hat b\overline x$,
∴$\stackrel{∧}{a}$=1.5-0.85×2.5=-0.625,
∴回归方程为$\stackrel{∧}{y}$=0.85x-0.625;
当x=3.00时,
$\stackrel{∧}{y}$=0.85×3.00-0.625=1.925(万元),
据此估计,该社区一户购买食品的年支出费用为3.00万元的家庭,
购买水果和牛奶的年支出费用约为1.925万元.
故选:D.

点评 本题考查了回归直线方程的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设(3-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则(a0+a2+a42-(a1+a3+a52的值为3125(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,则该几何体的体积为(  )
A.2B.1C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过抛物线C:y2=2px(p>0)的焦点F作斜率为$\frac{4}{3}$的直线l与C及其准线分别相交于A、B、D三点,则$\frac{|AD|}{|BD|}$的值为(  )
A.2或$\frac{1}{2}$B.3或$\frac{1}{3}$C.1D.4或$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a>0,b>0,函数f(x)=xlnx,g(x)=-a+xlnb,且?x∈[$\frac{a+b}{4}$,$\frac{3a+b}{5}$],使得f(x)≤g(x),则$\frac{b}{a}$的取值范围是[e,7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)=1+(1+x)+(1+x)2+(1+x)3+…+(1+x)n,则f'(0)=(  )
A.nB.n-1C.$\frac{n(n-1)}{2}$D.$\frac{1}{2}$n(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=1+2t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,曲线C的极坐标方程是ρ2=$\frac{4}{1+3si{n}^{2}θ}$.
(Ⅰ)写出直线l的普通方程与曲线C的直角坐标方程;
(Ⅱ)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知角α的终边过点P(-4m,3m),(m<0),则2sinα+cosα的值是$-\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率是$\frac{\sqrt{3}}{2}$,点P(1,$\frac{\sqrt{3}}{2}$)在椭圆E上.
(1)求椭圆E的方程;
(2)过点P且斜率为k的直线l交椭圆E于点Q(xQ,yQ)(点Q异于点P),若0<xQ<1,求直线l斜率k的取值范围;
(3)若以点P为圆心作n个圆Pi(i=1,2,…,n),设圆Pi交x轴于点Ai、Bi,且直线PAi、PBi分别与椭圆E交于Mi、Ni(Mi、Ni皆异于点P),证明:M1N1∥M2N2∥…∥MnNn

查看答案和解析>>

同步练习册答案