精英家教网 > 高中数学 > 题目详情
15.过抛物线C:y2=2px(p>0)的焦点F作斜率为$\frac{4}{3}$的直线l与C及其准线分别相交于A、B、D三点,则$\frac{|AD|}{|BD|}$的值为(  )
A.2或$\frac{1}{2}$B.3或$\frac{1}{3}$C.1D.4或$\frac{1}{4}$

分析 设抛物线方程,代入椭圆方程,设$\overrightarrow{AF}$=λ$\overrightarrow{FB}$,根据向量数量积的坐标运算,即可求得λ的值,分类讨论,根据抛物线的定义及相似性,即可求得丨BD丨及丨AD丨,即可求得$\frac{|AD|}{|BD|}$的值.

解答 解:抛物线C:y2=2px(p>0)的焦点F($\frac{p}{2}$,0),过A和B分别做准线的垂线,垂足分别为A′,B′,
则直线AB的方程:y=$\frac{4}{3}$(x-$\frac{p}{2}$)设A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}{y=\frac{4}{3}(x-\frac{p}{2})}\\{{y}^{2}=2px}\end{array}\right.$,整理得:y2-$\frac{3}{2}$py-p2=0,
则y1+y2=$\frac{3}{2}$p,y1y2=-p2
设$\overrightarrow{AF}$=λ$\overrightarrow{FB}$,($\frac{p}{2}$-x1,-y1)=(x2-$\frac{p}{2}$,y2),则-y1=λy2,由$\frac{({y}_{1}+{y}_{2})^{2}}{{y}_{1}{y}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$+$\frac{{y}_{2}}{{y}_{1}}$+2=-$\frac{9}{4}$,
∴-λ-$\frac{1}{λ}$+2=-$\frac{9}{4}$,整理得:λ2-17λ+4=0,解得:λ=4或λ=$\frac{1}{4}$,
当λ=4时,丨AF丨=4丨BF丨,则丨AB丨=5丨BF丨,
由抛物线的定义可知:丨BF丨=丨BB′丨,
由直线AB的斜率为$\frac{4}{3}$,则sin∠∠BDB′=$\frac{3}{5}$,即sin∠BDB′=$\frac{丨BB′丨}{丨BD丨}$=$\frac{4}{3}$,
∴丨BD丨=$\frac{5}{3}$丨BB′丨=$\frac{5}{3}$丨BF丨,丨AD丨=丨AB丨+丨BD丨=$\frac{20}{3}$,
∴$\frac{|AD|}{|BD|}$的值4,

当λ=$\frac{1}{4}$,4丨AF丨=丨BF丨,则丨AB丨=5丨AF丨,
由抛物线的定义可知:丨AF丨=丨AB′丨,
由直线AB的斜率为$\frac{4}{3}$,则sin∠∠ADF′=$\frac{3}{5}$,即sin∠ADF′=$\frac{丨AA′丨}{丨AD丨}$=$\frac{4}{3}$,
∴丨AD丨=$\frac{5}{3}$丨AB′丨=$\frac{5}{3}$丨AF丨,丨BD丨=丨AB丨+丨AD丨=$\frac{20}{3}$,
∴$\frac{|AD|}{|BD|}$的值$\frac{1}{4}$,

故选D.

点评 本题考查直线与抛物线的位置关系,考查韦达定理,向量的坐标运算,考查数形结合思想,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在矩形ABCD中,对角线AC,BD相交于点O,E为BO的中点,若$\overrightarrow{AE}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$(λ,μ为实数),则λμ=$\frac{3}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知圆C:x2+y2-2x-4y+1=0上存在两点关于直线l:x+my+1=0对称,经过点M(m,m)作圆C的切线,切点为P,则m=-1;|MP|=3..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)为奇函数,且在(0,+∞)上是增函数,又f(-3)=0,则不等式x[f(-x)-f(x)]<0的解集为(  )
A.(-∞,-3)∪(0,3)B.(-2,0)∪(3,+∞)C.(-3,3)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义运算$|\begin{array}{l}{a}&{c}\\{b}&{d}\end{array}|$=ad-bc,复数z满足$|\begin{array}{l}{z}&{i}\\{1}&{i}\end{array}|$=1+i,$\overline{z}$为z的共轭复数,则$\overline{z}$=2+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\frac{lnx}{x}$,关于x的不等式f2(x)+af(x)>0只有一个整数解,则实数a的取值范围是(  )
A.(-$\frac{ln3}{3}$,-$\frac{ln2}{2}$]B.(-$\frac{1}{e}$,-$\frac{ln2}{2}$]C.[$\frac{ln2}{2}$,-$\frac{ln3}{3}$]D.[$\frac{ln2}{2}$,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了解某社区居民购买水果和牛奶的年支出费用与购买食品的年支出费用的关系,随机调查了该社区5户家庭,得到如下统计数据表:
购买食品的年支出费用x(万元)2.092.152.502.842.92
购买水果和牛奶的年支出费用y(万元)1.251.301.501.701.75
根据上表可得回归直线方程$\hat y=\hat bx+\hat a$,其中$\hat b=0.85,\hat a=\overline y-\hat b\overline x$,据此估计,该社区一户购买食品的年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为(  )
A.1.79万元B.2.55万元C.1.91万元D.1.94万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.下表提供了某公司技术升级后生产A产品过程中记录的产量x(吨)与相应的成本y(万元)的几组对照数据:
x3456
y2.5344.5
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y对x的回归直线方程;
(3)已知该公司技术升级前生产100吨A产品的成本为90万元.试根据(2)求出的回归直线方程,预测技术升级后生产100吨A产品的成本比技术升级前约降低多少万元?
(附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{1}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点为A,点B(0,$\frac{\sqrt{15}}{3}$b),若线段AB的垂直平分线过右焦点F,则双曲线C的离心率为2.

查看答案和解析>>

同步练习册答案