精英家教网 > 高中数学 > 题目详情
3.若函数f(x)为奇函数,且在(0,+∞)上是增函数,又f(-3)=0,则不等式x[f(-x)-f(x)]<0的解集为(  )
A.(-∞,-3)∪(0,3)B.(-2,0)∪(3,+∞)C.(-3,3)D.(-∞,-3)∪(3,+∞)

分析 根据题意,由函数f(x)为奇函数分析可得x[f(-x)-f(x)]<0?xf(x)>0,结合函数的单调性以及f(-3)=0分2种情况讨论:①、当x∈(-∞,-3)∪(0,3)上②、当x∈(-3,0)∪(3,+∞)上,分别求出每种情况下x的取值范围,综合即可得答案.

解答 解:若函数f(x)为奇函数,则f(-x)=-f(x),
则x[f(-x)-f(x)]<0⇒x[-2f(x)]<0⇒xf(x)>0,
若奇函数f(x)在(0,+∞)上为增函数,则函数f(x)在(-∞,0)上也为增函数,
又由f(-3)=0,则f(3)=0;
分2种情况讨论:
①、当x∈(-∞,-3)∪(0,3)上时,f(x)<0,
若xf(x)>0,必有x<0,
此时x[f(-x)-f(x)]<0的解集为(-∞,-3),
②、当x∈(-3,0)∪(3,+∞)上时,f(x)>0,
若xf(x)>0,必有x>0,
此时x[f(-x)-f(x)]<0的解集为(3,+∞),
综合可得:不等式x[(f(x)-f(-x)]<0的解集为(-∞,-3)∪(3,+∞);
故选:D.

点评 本题考查函数的奇偶性与单调性的综合应用,其中奇函数在对称区间上单调性相同,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,焦距为2,直线y=kx(x≠0)与椭圆C交于A,B两点,M为其右准线与x轴的交点,直线AM,BM分别与椭圆C交于A1,B1两点,记直线A1B1的斜率为k1
(1)求椭圆C的方程;
(2)是否存在常数λ,使得k1=λk恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=(x2-2ax)lnx+2ax-$\frac{1}{2}$x2,其中a∈R.
(1)若a=0,且曲线f(x)在x=t处的切线l过原点,求直线l的方程;
(2)求f(x)的极值;
(3)若函数f(x)有两个极值点x1,x2(x1<x2),证明f(x1)+f(x2)<$\frac{1}{2}$a2+3a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.现有甲,乙,丙,丁四位同学课余参加巴蜀爱心社和巴蜀文学风的活动,每人参加且只能参加一个社团的活动,并且参加每个社团都是等可能的.
(1)求巴蜀爱心社和巴蜀文学风都至少有1人参加的概率;
(2)求甲,乙在同一个社团,丙,丁不在同一个社团的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,则该几何体的体积为(  )
A.2B.1C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f′(x)为函数f(x)的导函数,且$f(x)=\frac{1}{2}{x^2}-f(0)+f'(1){e^{x-1}}$,若$g(x)=f(x)-\frac{1}{2}{x^2}+x$,则方程$g(\frac{x^2}{a}-x)-x=0$有且仅有一个根时,a的取值范围是(  )
A.[1,+∞)B.(-∞,1]C.(0,1]D.(-∞,0)∪{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过抛物线C:y2=2px(p>0)的焦点F作斜率为$\frac{4}{3}$的直线l与C及其准线分别相交于A、B、D三点,则$\frac{|AD|}{|BD|}$的值为(  )
A.2或$\frac{1}{2}$B.3或$\frac{1}{3}$C.1D.4或$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)=1+(1+x)+(1+x)2+(1+x)3+…+(1+x)n,则f'(0)=(  )
A.nB.n-1C.$\frac{n(n-1)}{2}$D.$\frac{1}{2}$n(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个焦点与y2=4$\sqrt{3}$x的焦点重合,点$(\sqrt{3},\frac{1}{2})$在椭圆C上.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m(k≠0)与椭圆C交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求△OPQ面积的最大值(O为坐标原点).

查看答案和解析>>

同步练习册答案