精英家教网 > 高中数学 > 题目详情
9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,焦距为2,直线y=kx(x≠0)与椭圆C交于A,B两点,M为其右准线与x轴的交点,直线AM,BM分别与椭圆C交于A1,B1两点,记直线A1B1的斜率为k1
(1)求椭圆C的方程;
(2)是否存在常数λ,使得k1=λk恒成立?若存在,求出λ的值;若不存在,请说明理由.

分析 (1)由题意c=1,根据椭圆的离心率,即可求得a的值,b2=a2-c2=1,即可求得椭圆方程;
(2)根据椭圆的准线方程,即可求得AM的方程,代入椭圆方程,利用韦达定理即可求得A1及B1,k1=$\frac{-6{y}_{0}}{2{x}_{0}}$=-3k,存在λ=-3,使得k1=λk恒成立.

解答 解:(1)由椭圆的焦距2c=2,则c=1,双曲线的离心率e=$\frac{c}{a}$=$\frac{{\sqrt{2}}}{2}$,则a=$\sqrt{2}$,
则b2=a2-c2=1,
∴椭圆的标准方程:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)设A(x0,y0),则2y02=2-y02,则B(-x0,-y0),k=$\frac{{y}_{0}}{{x}_{0}}$,
右准线方程x=2,则M(2,0),
直线AM的方程为y=$\frac{{y}_{0}}{{x}_{0}-2}$(x-2),
$\left\{\begin{array}{l}{y=\frac{{y}_{0}}{{x}_{0}-2}(x-2)}\\{\frac{{x}^{2}}{2}+{y}^{2}=2}\end{array}\right.$,整理得:(x0-2)2x2+2y02(x-2)2-2(x0-2)2=0,
该方程两个根为x0,${x}_{{A}_{1}}$,
∴x0•${x}_{{A}_{1}}$=$\frac{8{y}_{0}^{2}-2({x}_{0}-2)^{2}}{({x}_{0}-2)^{2}+2{y}_{0}^{2}}$=$\frac{4(2-{x}_{0}^{2})-2({x}_{0}-2)^{2}}{({x}_{0}-2)^{2}+2-{x}_{0}^{2}}$=$\frac{4-3{x}_{0}}{3-2{x}_{0}}$•x0
则${x}_{{A}_{1}}$=$\frac{4-3{x}_{0}}{3-2{x}_{0}}$,${y}_{{A}_{1}}$=$\frac{{y}_{0}}{{x}_{0}-2}$(${x}_{{A}_{1}}$-2)=$\frac{{y}_{0}}{3-2{x}_{0}}$,
则A1($\frac{4-3{x}_{0}}{3-2{x}_{0}}$,$\frac{{y}_{0}}{3-2{x}_{0}}$),同理可得B1($\frac{4+3{x}_{0}}{3+2{x}_{0}}$,-$\frac{{y}_{0}}{3+2{x}_{0}}$),
则k1=$\frac{-6{y}_{0}}{2{x}_{0}}$=-3k,
即存在λ=-3,使得k1=λk恒成立.

点评 本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查韦达定理,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{4}{3}$B.2C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图是某多面体的三视图,则该几何体的外接球体积为4$\sqrt{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.《孙子算经》中有道算术题:“今有百鹿人城,家取一鹿不尽,又三
家共一鹿适尽,问城中家几何?”意思是有100头鹿,每户分1头还有
剩余;再每3户共分1头,正好分完,问共有多少户人家?设计框图如
下,则输出的值是(  )
A.74B.75C.76D.77

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则该几何体的表面积是(  )
A.$20+4\sqrt{5}$B.$12+4\sqrt{5}$C.$20+2\sqrt{5}$D.$12+2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程和相关系数r,分别得到以下四个结论:
①y=2.347x-6.423,且r=-0.9284;
②y=-3.476x+5.648,且r=-0.9533;
③y=5.437x+8.493,且r=0.9830; 
④y=-4.326x-4.578,且r=0.8997.
其中一定不正确的结论的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在矩形ABCD中,对角线AC,BD相交于点O,E为BO的中点,若$\overrightarrow{AE}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$(λ,μ为实数),则λμ=$\frac{3}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|2x-a|-|x|,a∈R
(1)当a=2时,解关于的不等式f(x)>1;
(2)若f(x)≥4-|2x+a|-|x|对?x∈R恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)为奇函数,且在(0,+∞)上是增函数,又f(-3)=0,则不等式x[f(-x)-f(x)]<0的解集为(  )
A.(-∞,-3)∪(0,3)B.(-2,0)∪(3,+∞)C.(-3,3)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

同步练习册答案