精英家教网 > 高中数学 > 题目详情
17.《孙子算经》中有道算术题:“今有百鹿人城,家取一鹿不尽,又三
家共一鹿适尽,问城中家几何?”意思是有100头鹿,每户分1头还有
剩余;再每3户共分1头,正好分完,问共有多少户人家?设计框图如
下,则输出的值是(  )
A.74B.75C.76D.77

分析 由题意,输出的值是100÷(1+$\frac{1}{3}$),计算可得结论

解答 解:由题意,输出的值是100÷(1+$\frac{1}{3}$)=100÷$\frac{4}{3}$=75.
故选:B.

点评 本题考查了程序框图的应用问题,解决此题关键是明白每户人家前后共分到1+$\frac{1}{3}$只鹿,进而根据求一个数里面有几个另一个数,用除法计算得解,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,若输出的结果是$\frac{99}{199}$,则判断框内应填的内容是(  )
A.n≤97B.n≤98C.n≤99D.n≤100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图为某几何体的三视图,则其体积为$π+\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5. min(a,b)表示中的最小值.执行如图所示的程序框图,若输入的a,b值分别为6,4,则输出的min(a,b)值是(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.第17届亚运会于2014年9月19日至10月4日在韩国仁川进行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.
(1)根据以上数据完成以下2×2列联表:
 喜爱运 动不喜爱运动总计
10 16
6 14
总计  30
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?参考公式:K2=$\frac{n(ad-b{c)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.400.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Msin(ωx+φ)$(M>0,|φ|<\frac{π}{2},0<ω<3)$图象上的一个最高点为$(\frac{2}{3}π,2)$,函数f(x)图象与y轴交点为(0,1).
(Ⅰ)求M,ω,φ的值;
(Ⅱ)在△ABC中,内角A,B,C所对的边分别是a,b,c,满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,焦距为2,直线y=kx(x≠0)与椭圆C交于A,B两点,M为其右准线与x轴的交点,直线AM,BM分别与椭圆C交于A1,B1两点,记直线A1B1的斜率为k1
(1)求椭圆C的方程;
(2)是否存在常数λ,使得k1=λk恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示,该伪代码运行的结果为9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.现有甲,乙,丙,丁四位同学课余参加巴蜀爱心社和巴蜀文学风的活动,每人参加且只能参加一个社团的活动,并且参加每个社团都是等可能的.
(1)求巴蜀爱心社和巴蜀文学风都至少有1人参加的概率;
(2)求甲,乙在同一个社团,丙,丁不在同一个社团的概率.

查看答案和解析>>

同步练习册答案