精英家教网 > 高中数学 > 题目详情
4.下表提供了某公司技术升级后生产A产品过程中记录的产量x(吨)与相应的成本y(万元)的几组对照数据:
x3456
y2.5344.5
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y对x的回归直线方程;
(3)已知该公司技术升级前生产100吨A产品的成本为90万元.试根据(2)求出的回归直线方程,预测技术升级后生产100吨A产品的成本比技术升级前约降低多少万元?
(附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{1}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值)

分析 (1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来即可;
(2)计算平均数和回归方程的系数,写出线性回归方程;
(3)利用线性回归方程计算x=100时$\stackrel{∧}{y}$的值,再求出比技改前降低了多少.

解答 解:(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图如下:

(2)计算$\overline x=\frac{1}{4}(3+4+5+6)=4.5$,
$\overline y=\frac{1}{4}(2.5+3+4+4.5)=3.5$,
$\sum_{i=1}^4{x_1^2={3^2}+{4^2}+{5^2}+{6^2}}=86$,
$\sum_{i=1}^4{{x_i}{y_i}=3×2.5+4×3+5×4+6×4.5}=66.5$,
∴回归方程的系数为
$\hat b=\frac{{\sum_{i=1}^4{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^4{x_1^2-n{{\overline x}^2}}}}=\frac{66.5-4×4.5×3.5}{{86-4×{{4.5}^2}}}=0.7$,
$\hat a=\overline y-\hat b\overline x=3.5-0.7×4.5=0.35$,
所求线性回归方程为$\hat y=0.7x+0.35$;
(3)利用线性回归方程计算x=100时,
$\hat y=0.7×100+0.35=70.35$,
又90-70.35=19.65,
即比技改前降低了19.65吨.

点评 本题考查了散点图与线性回归方程的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知f(x)=(x2-2ax)lnx+2ax-$\frac{1}{2}$x2,其中a∈R.
(1)若a=0,且曲线f(x)在x=t处的切线l过原点,求直线l的方程;
(2)求f(x)的极值;
(3)若函数f(x)有两个极值点x1,x2(x1<x2),证明f(x1)+f(x2)<$\frac{1}{2}$a2+3a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过抛物线C:y2=2px(p>0)的焦点F作斜率为$\frac{4}{3}$的直线l与C及其准线分别相交于A、B、D三点,则$\frac{|AD|}{|BD|}$的值为(  )
A.2或$\frac{1}{2}$B.3或$\frac{1}{3}$C.1D.4或$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)=1+(1+x)+(1+x)2+(1+x)3+…+(1+x)n,则f'(0)=(  )
A.nB.n-1C.$\frac{n(n-1)}{2}$D.$\frac{1}{2}$n(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=1+2t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,曲线C的极坐标方程是ρ2=$\frac{4}{1+3si{n}^{2}θ}$.
(Ⅰ)写出直线l的普通方程与曲线C的直角坐标方程;
(Ⅱ)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正六边形ABCDEF的边长为1,则$\overrightarrow{AF}$•$\overrightarrow{BD}$的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知角α的终边过点P(-4m,3m),(m<0),则2sinα+cosα的值是$-\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个焦点与y2=4$\sqrt{3}$x的焦点重合,点$(\sqrt{3},\frac{1}{2})$在椭圆C上.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m(k≠0)与椭圆C交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求△OPQ面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=(cosx,$\frac{3}{2}$),函数f(x)=($\overrightarrow{m}$+$\overrightarrow{n}$)•$\overrightarrow{m}$.
(1)求函数f(x)的单调递增区间;
(2)将函数f(x)的图象向左平移$\frac{π}{8}$个单位得到函数g(x)的图象,在△ABC中,角A,B,C所对边分别a,b,c,若a=3,g($\frac{A}{2}$)=$\frac{\sqrt{6}}{6}$,sinB=cosA,求b的值.

查看答案和解析>>

同步练习册答案