精英家教网 > 高中数学 > 题目详情
如果f(x)=1+x
C
1
n
+x2
C
2
n
+…+xn-1
C
n-1
n
+xn
C
n
n
,那么
log3f(8)
log3f(2)
=
2
2
分析:根据题意,由二项式定理可得1+xCn1+x2Cn2+…+xn-1Cnn-1+xnCnn=(1+x)n,即f(x)=(1+x)n,进而可得f(8)与f(2)的值,代入
log3f(8)
log3f(2)
中可得答案.
解答:解:f(x)=1+xCn1+x2Cn2+…+xn-1Cnn-1+xnCnn=(1+x)n
则f(8)=(1+8)n=32n,f(2)=(1+2)n=3n
log3f(8)
log3f(2)
=
log332n
log33n
=
2n
n
=2

故答案为2.
点评:本题考查二项式定理的应用;解题时,注意二项式公式的逆用,即1+xCn1+x2Cn2+…+xn-1Cnn-1+xnCnn=(1+x)n即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果f(x)=
1   |x|≤1
0   |x|>1
,那么f[f(2)]=
 
;不等式f(2x-1)≥
1
2
的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=logag(x)(a>0且a≠1)
(1)若f(x)=log
1
2
(3x-1)
,且满足f(x)>1,求x的取值范围;
(2)若g(x)=ax2-x,是否存在a使得f(x)在区间[
1
2
,3]上是增函数?如果存在,说明a可以取哪些值;如果不存在,请说明理由.
(3)定义在[p,q]上的一个函数m(x),用分法T:p=x0<x1<…<xi-1<xi<…<xn=q
将区间[p,q]任意划分成n个小区间,如果存在一个常数M>0,使得不等式|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xi)-m(xi-1)|+…+|m(xn)-m(xn-1)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数.试判断函数f(x)=log4(4x2-x)是否为在[
1
2
,3]上的有界变差函数?若是,求M的最小值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•潍坊一模)设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函数y=g(x)图象恒过定点P,且点P在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x),讨论F(x)的单调性;
(Ⅲ)在(I)的条件下,设G(x)=
f(x),x≤1
g(x),x>1
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果f(x)=
1   |x|≤1
0   |x|>1
,那么f[f(2)]=______;不等式f(2x-1)≥
1
2
的解集是 ______.

查看答案和解析>>

科目:高中数学 来源:潍坊一模 题型:解答题

设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函数y=g(x)图象恒过定点P,且点P在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x),讨论F(x)的单调性;
(Ⅲ)在(I)的条件下,设G(x)=
f(x),x≤1
g(x),x>1
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案