【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,设
为
:
上的动点,点
为
在
轴上的投影,动点
满足
,点
的轨迹为曲线
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,点
,
为直线
上两点.
(1)求
的参数方程;
(2)是否存在
,使得
的面积为8?若存在,有几个这样的点?若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)
万件与年促销费用
万元,满足
(
为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2020年该产品的利润
(万元)表示为年促销费用
(万元)的函数;
(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求满足下列条件的椭圆或双曲线的标准方程:
(1)椭圆的焦点在
轴上,焦距为4,且经过点
;
(2)双曲线的焦点在
轴上,右焦点为
,过
作重直于
轴的直线交双曲线于
,
两点,且
,离心率为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线2x﹣y﹣1=0与直线x﹣2y+1=0交于点P.
(1)求过点P且垂直于直线3x+4y﹣15=0的直线l1的方程;(结果写成直线方程的一般式)
(2)求过点P并且在两坐标轴上截距相等的直线l2方程(结果写成直线方程的一般式)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】统计表明,某种型号的汽车在匀速行驶中每小时耗油量
(升)关于行驶速度
(千米/小时)的函数解析式可以表示为:
,已知甲、乙两地相距100千米.
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a(x2﹣1)﹣lnx.
(1)若y=f(x)在x=2处的切线与y垂直,求a的值;
(2)若f(x)≥0在[1,+∞)上恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面上,给定非零向量
,对任意向量
,定义
.
(1)若
,
,求
;
(2)若
,证明:若位置向量
的终点在直线
上,则位置向量
的终点也在一条直线上;
(3)已知存在单位向量
,当位置向量
的终点在抛物线
:
上时,位置向量
终点总在抛物线
:
上,曲线
和
关于直线
对称,问直线
与向量
满足什么关系?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线
的左焦点为
,点A的坐标为(0,1),点P为双曲线右支上的动点,且△APF1周长的最小值为6,则双曲线的离心率为( )
A.
B.
C.2D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com