精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,圆的参数方程,以为极点, 轴的非负半轴为极轴建立极坐标系.

(Ⅰ)求圆的极坐标方程;

(Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.

【答案】(1)ρ=2cosθ.(2)|PQ|=2.

【解析】试题分析】(1)依据题设条件先将圆的参数方程化为直角坐标方程,再运用极坐标与直角坐标之间的关系分析求解;(2)借助极坐标方程进行求解

解:(I)利用cos2φ+sin2φ=1,把圆C的参数方程为参数)化为(x﹣1)2+y2=1,∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.

(II)设(ρ1,θ1)为点P的极坐标,由,解得

设(ρ2,θ2)为点Q的极坐标,由,解得

∵θ12,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆和抛物线交于两点,且直线恰好通过椭圆的右焦点.

1)求椭圆的标准方程;

2)经过椭圆右焦点的直线和椭圆交于两点,点在椭圆上,且

其中为坐标原点,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出了四个类比推理:

1类比推出为三个向量则

2a,b为实数,则a=b=0类比推出为复数,若

3在平面内,三角形的两边之和大于第三边类比推出在空间中,四面体的任意三个面的面积之和大于第四个面的面积

4在平面内,过不在同一条直线上的三个点有且只有一个圆类比推出在空间中,过不在同一个平面上的四个点有且只有一个球

上述四个推理中,结论正确的个数有

A1个 B2个 C3个 D4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:能够将圆的周长和面积同时等分成两个部分的函数称为圆的一个“太极函数”,则下列有关说法中:

①对于圆的所有非常数函数的太极函数中,一定不能为偶函数;

②函数是圆的一个太极函数;

③存在圆,使得是圆的一个太极函数;

④直线所对应的函数一定是圆的太极函数;

⑤若函数是圆的太极函数,则

所有正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”,其概率P(A)=0.96.

(1)求从该批产品中任取1件是二等品的概率p.

(2)若该批产品共100件,从中无放回抽取2件产品,ξ表示取出的2件产品中二等品的件数.求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,是等边三角形,是等腰直角三角形,,平面平面平面,点的中点,连接

(1)求证:平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某学校高一年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成6组:第1组,第2组,…,第6组,下图是按上述分组方法得到的频率分布直方图.

(1)求这50名男生身高的中位数,并估计该校高一全体男生的平均身高;

(2)求这50名男生当中身高不低于176的人数,并且在这50名身高不低于176的男生中任意抽取2人,求这2人身高都低于180的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE,其中三角形区域ABE为主题游乐区,四边形区域为BCDE为休闲游乐区,AB、BC,CD,DE,EA,BE为游乐园的主要道路不考虑宽.

I求道路BE的长度;

求道路AB,AE长度之和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十八届五种全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖保健、妇幼保健、托儿等公共服务水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了100位30到40岁的公务员,得到情况如下表:

男公务员

女公务员

生二胎

40

20

不生二胎

20

20

(1)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由;

(2)把以上频率当概率,若从社会上随机抽取3位30到40岁的男公务员,记其中生二胎的人数为,求随机变量的分布列,数学期望.

0.050

0.010

0.001

3.841

6.635

10.828

附:

查看答案和解析>>

同步练习册答案