分析 (Ⅰ)令f(x)=0,则x=$\frac{1}{2}$,或x=$\frac{-1+b}{2}$,结合题意可得b的取值范围;
(Ⅱ)求出对称轴,讨论对称轴和区间[0,1]的关系,可得最值,即可证明f(x)+M>0
解答 解:(Ⅰ)当a=1时,函数f(x)=4x2-2bx-1+b,
令f(x)=0,则x=$\frac{1}{2}$,或x=$\frac{-1+b}{2}$,
若函数f(x)在定义域[0,1]内有两个不同的零点,
则$\frac{-1+b}{2}$∈[0,1],且$\frac{-1+b}{2}$$≠\frac{1}{2}$,
解得:b∈[1,2)∪(2,3]
证明:(Ⅱ) 要证明:f(x)+M>0,
即证明:f(x)max+f(x)min>0
∵函数f(x)=4ax2-2bx-a+b的图象是开口朝上,且以直线x=$\frac{b}{4a}$为对称轴的抛物线,
①$\frac{b}{4a}$<0,或$\frac{b}{4a}$>1时,f(x)max+f(x)min=f(0)+f(1)=-a+b+3a-b=2a>0;
②0≤$\frac{b}{4a}$<$\frac{1}{2}$,即0≤b<2a时,f(x)max+f(x)min=f($\frac{b}{4a}$)+f(1)=-a+b-$\frac{{b}^{2}}{4a}$+3a-b=2a-$\frac{{b}^{2}}{4a}$=$\frac{8{a}^{2}-{b}^{2}}{4a}$>$\frac{4{a}^{2}}{4a}$=a>0;
③$\frac{1}{2}$≤$\frac{b}{4a}$≤1,即2a≤b≤4a时,f(x)max+f(x)min=f($\frac{b}{4a}$)+f(0)=-a+b-$\frac{{b}^{2}}{4a}$-a+b=2b-2a-$\frac{{b}^{2}}{4a}$=$\frac{8ab-8{a}^{2}-{b}^{2}}{4a}$=$\frac{-({b-4a)}^{2}+8{a}^{2}}{4a}$≥$\frac{4{a}^{2}}{4a}$=a>0;
综上可得:f(x)max+f(x)min>0恒成立,即f(x)+M>0
点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x-1 | B. | y=x-$\frac{1}{2}$ | C. | y=2x-1 | D. | y=$\frac{1}{2}x$-$\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜欢看该节目 | 不喜欢看该节目 | 合计 | |
| 女生 | 5 | ||
| 男生 | 10 | ||
| 合计 | 50 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com