精英家教网 > 高中数学 > 题目详情
19.已知函数y=ln(2x)的图象与x轴相交于点P,则该函数在点P处的切线方程为(  )
A.y=x-1B.y=x-$\frac{1}{2}$C.y=2x-1D.y=$\frac{1}{2}x$-$\frac{1}{4}$

分析 令y=0,可得P($\frac{1}{2}$,0),求得函数的导数,可得切线的斜率为2,由点斜式方程可得切线的方程.

解答 解:由题意可令y=0,解得x=$\frac{1}{2}$,即有P($\frac{1}{2}$,0),
函数y=ln(2x)的导数为y′=$\frac{1}{x}$,
可得该函数在点P处的切线斜率为k=2,
可得该函数在点P处的切线方程为y=2(x-$\frac{1}{2}$),
即y=2x-1.
故选:C.

点评 本题考查导数的运用:求切线方程,考查导数的几何意义,正确求导和运用点斜式方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}为等差数列,a1+a7=20,a11-a8=18.
(1)求数列{an}的通项公式;
(2)若在数列{an}中的每相邻两项之间插入2个数,使之构成新的等差数列{bn},求新的等差数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列an=2+$\frac{1}{2n}$(n∈N*),则a4-a2=$-\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,A,B,C的对边分别是 a,b,c已知 3acosA=ccosB+bcosC.
(Ⅰ)求 cosA 的值;
(Ⅱ)求$cos(2A+\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设定义在区间(0,+∞)内的函数f(x)满足下列条件:①单调递增;②f(x)•f[f(x)+$\frac{2}{x}$]=4恒成立;③f(2)+1>0,则f(2)=(  )
A.1-$\sqrt{3}$B.1+$\sqrt{3}$C.1±$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设F1,F2分别是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,点M(3,$\sqrt{2}$)在此双曲线上,且|MF1|与|MF2|的夹角的余弦值为$\frac{7}{9}$,则双曲线C的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a>0,b∈R,函数f(x)=4ax2-2bx-a+b的定义域为[0,1]
(Ⅰ)当a=1时,函数f(x)在定义域内有两个不同的零点,求b的取值范围;
(Ⅱ) 记f(x)的最大值为M,证明:f(x)+M>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.双曲线x2-$\frac{y^2}{3}$=1的渐近线方程为(  )
A.$\sqrt{3}$x±y=0B.3x±y=0C.x±$\sqrt{3}$y=0D.x±3y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线f(x)=lnx在点(1,0)处的切线与坐标轴所围成的三角形的面积为(  )
A.1B.$\frac{1}{2}$C.2D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案