| A. | (-∞,3] | B. | [9,+∞) | C. | (-∞,9] | D. | (-∞,9) |
分析 通过①当k≤0时,联立方程组,根据判别式△<0,可得两个函数的图象无交点,故满足条件.②当k>0时,在同一个坐标系中,画出这两个函数的图象,数形结合可得 0<$\sqrt{k}$≤3,由此求得k的范围.综合①②可得k的范围.
解答
解:①当k≤0时,函数f(x)=|x2-k|=x2-k,由$\left\{\begin{array}{l}{y={x}^{2}-k}\\{y=x-3}\end{array}\right.$,可得x2-x+3-k=0.
由于判别式△=1-4(3-k)=-11+4k<0,故x2-3x+3-k=0无解,
故函数f(x)=|x2-k|的图象与函数g(x)=x-3的图象无交点,故满足条件.
②当k>0时,在同一个坐标系中,画出函数f(x)=|x2-k|的图象(红线部分)
与函数g(x)=x-3的图象(绿线部分),
如图所示:
此时,若函数f(x)=|x2-k|的图象与函数g(x)=x-3的图象至多有一个公共点,
则有 0<$\sqrt{k}$≤3,∴0<k≤9.
综合①②可得,k≤9,
故选:C.
点评 本题主要考查两个函数的图象的交点个数的判断,体现了分类讨论以及数形结合的数学思想,属于中档题.
科目:高中数学 来源: 题型:解答题
| 班级 | 高二(1) | 高二(2) | 高二(3) | 高二(4) | 高二(5) |
| 班级代号x | 1 | 2 | 3 | 4 | 5 |
| 获奖人数y | 5 | 4 | 2 | 3 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在平面α内存在直线a与直线l平行 | B. | 在平面α内存在直线a与直线l垂直 | ||
| C. | 在平面α内存在直线a与直线l相交 | D. | 在平面α内存在直线a与直线l异面 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 212-57 | B. | 211-47 | C. | 210-38 | D. | 29-30 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
| 频数 | 6 | 26 | 38 | 22 | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com