精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-
3
sinx+3cosx,若x1x2>0,且f(x)+f(x2)=0
,则|x1+x2|的最小值为(  )
A.
π
6
B.
π
3
C.
π
2
D.
3
f(x)=-
3
sinx+3cosx
=2
3
(-
1
2
sinx+
3
2
cosx)=2
3
 sin(
π
3
-x)=-2
3
sin(x-
π
3
),x1•x2>0,且f(x1)+f(x2)=0,
∴x1+x2 等于函数的零点的2倍,∴|x1+x2|的最小值等于函数f(x)的绝对值最小的零点的2倍.
∴令-2
3
sin(x-
π
3
)=0 可得sin(x-
π
3
)=0,x-
π
3
=kπ,k∈z.故函数f(x)的绝对值最小的零点为
π
3
,故|x1+x2|的最小值为
3

故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案