精英家教网 > 高中数学 > 题目详情

(本题满分14分)设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意xR都有. 则称直线l为曲线S的“上夹线”.(Ⅰ)已知函数.求证:为曲线的“上夹线”.

(Ⅱ)观察下图:

           

    根据上图,试推测曲线的“上夹线”的方程,并给出证明.


解析:

(Ⅰ)由, -------1分

分当时,,此时, -------2分

,所以是直线与曲线的一个切点;-------3分

时,,此时, ------4分

,所以是直线与曲线的一个切点;  -----5分

所以直线l与曲线S相切且至少有两个切点;

对任意xR,所以  --------6分

因此直线是曲线的“上夹线”.        ----------7分

(Ⅱ)推测:的“上夹线”的方程为       ------9分

①先检验直线与曲线相切,且至少有两个切点:

设: 

,得:kZ)-----10分

时,

故:过曲线上的点()的切线方程为:

y[]= [-()],化简得:

即直线与曲线相切且有无数个切点. ----12分

不妨设,②下面检验g(x)F(x)g(x)F(x)=

直线是曲线的“上夹线”. --------14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分)

设函数

(1)若,过两点的中点作轴的垂线交曲线于点,求证:曲线在点处的切线过点

(2)若,当恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)设函数(1)求函数的单调区间;(2)求在[—1,2]上的最小值; (3)当时,用数学归纳法证明:

查看答案和解析>>

科目:高中数学 来源:2011——2012学年湖北省洪湖二中高三八月份月考试卷理科数学 题型:解答题

(本题满分14分)设椭圆的左、右焦点分别为F1
F2,直线过椭圆的一个焦点F2且与椭圆交于P、Q两点,若的周长为
(1)求椭圆C的方程;
(2)设椭圆C经过伸缩变换变成曲线,直线与曲线相切
且与椭圆C交于不同的两点A、B,若,求面积的取值范围。(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高三寒假作业数学卷三 题型:解答题

(本题满分14分)设M是由满足下列条件的函数构成的集合:“①方有实数根;②函数的导数满足

 (I)证明:函数是集合M中的元素;

 (II)证明:函数具有下面的性质:对于任意,都存在,使得等式成立。 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题

本题满分14分)

设函数.

(1)若,求函数的极值;

(2)若,试确定的单调性;

(3)记,且上的最大值为M,证明:

 

 

查看答案和解析>>

同步练习册答案