精英家教网 > 高中数学 > 题目详情
11.在△ABC中,sinA+cosA=$\frac{7}{13}$,求下列各式的值:
(1)tanA;
(2)2sinAcosA-cos2A.

分析 (1)把已知两边平方求得sinAcosA,进一步求得sinA-cosA,可得tanA;
(2)由同角三角函数的基本关系式把2sinAcosA-cos2A转化为正切求解.

解答 解:(1)∵sinA+cosA=$\frac{7}{13}$,①
∴(sinA+cosA)2=1+2sinAcosA=$\frac{49}{169}$,
则2sinAcosA=-$\frac{120}{169}$.
则(sinA-cosA)2=1-2sinAcosA=$\frac{289}{169}$.
在△ABC中,2sinA•cosA<0,则sinA>0,cosA<0.
∴sinA-cosA=$\frac{17}{13}$,②
由①②联立,得sinA=$\frac{12}{13}$,cosA=-$\frac{5}{13}$.
∴tanA=$\frac{sinA}{cosA}$=-$\frac{12}{5}$;
(2)2sinAcosA-cos2A=$\frac{2sinAcosA-co{s}^{2}A}{si{n}^{2}A+co{s}^{2}A}$
=$\frac{2tanA-1}{ta{n}^{2}A+1}$=-$\frac{145}{169}$.

点评 本题考查三角函数的化简求值,考查了同角三角函数基本关系式的应用,体现了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设△ABC的内角A,B,C所对的边分别为a,b,c,若b=acosC+csinA,则A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={x|x(x-3)≥0},B={x|x<1},则A∩B=(  )
A.(-∞,0]∪[3,+∞)B.(-∞,1)∪[3,+∞)C.(-∞,1)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的通项为an=(-1)n(4n-3),则数列{an}的前31项和T31=-61.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若实数m的取值使函数f(x)在定义域上有两个极值点,则叫做函数f(x)具有“凹凸趋向性”,已知f′(x)是函数f(x)的导数,且f′(x)=$\frac{m}{x}$-2lnx,当函数f(x)具有“凹凸趋向性”时,m的取值范围是(  )
A.(-$\frac{2}{e}$,+∞)B.(-$\frac{2}{e}$,0)C.(-∞,-$\frac{2}{e}$)D.(-$\frac{2}{e}$,-$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的 浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.
当空气污染指数(单位:μg/m3)为0-50时,空气质量级别为一级,空气质量状况属于优;
当空气污染指数为50-100时,空气质量级别为二级,空气质量状况属于良;
当空气污染指数为100-150时,空气质量级别为三级,空气质量状况属于轻度污染;
当空气污染指数为150-200时,空气质量级别为四级,空气质量状况属于中度污染;
当空气污染指数为200-300时,空气质量级别为五级,空气质量状况属于重度污染;
当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.
2015年12月某日某省x个监测点数据统计如表:
空气污染指数
(单位:μg/m3
[0,50](50,100](100,150](150,200]
监测点个数1540y10
(1)根据所给统计表和频率分布直方图中的信息求出x、y的值,并完成频率分布直方图;
(2)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x2+ax+a)$\sqrt{1-2x}$.
( I)当a=$\frac{17}{3}$时,求f(x)的极值;
( II)若f(x)在区间(0,$\frac{1}{4}$)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等比数列{an}中,若a6=2,a18=18,则a12的值为(  )
A.6B.-6C.±6D.±5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,正三棱锥A-BCD中,已知AB=BC=$\sqrt{6}$.
(1)求证:AD⊥BC;
(2)求三棱锥A-BCD的体积.

查看答案和解析>>

同步练习册答案