精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

某学校举行“科普与环保知识竞赛”,并从中抽取了部分学生的成绩(均为整数),所得数据的分布直方图如图.已知图中从左至右前3个小组的频率之比为1∶2∶3,第4小组与第5小组的频率分别是0.175和0.075,第2小组的频数为10.

(Ⅰ)求所抽取学生的总人数,并估计这次竞赛的优秀率(分数大于80分);

(Ⅱ)从成绩落在(50.5,60.5)和(90.5,100.5)的学生中任选两人,求他们的成绩在同一组的概率.

解:(Ⅰ)设第一小组的频率为x,则      x+2x+3x+0.175+0.075=1,解得x=0.125.

第二小组的频数为10,得抽取顾客的总人数为=40人. …………………3分

依题意,分数大于80分的学生所在的第四、第五小组的频率和为

       0.175+0.075=0.25,所以估计本次竞赛的优秀率为25%.   ………………………6分

(Ⅱ)落在(50.5,60.5)和(90.5,100.5)的学生数分别为0.125×40=5;0.075×40=3.

…………………………………7分

落在(50.5,60.5)的学生设为:Ai(i=1,2,3,4,5);落在(90.5,100.5)的学生设为:

Bj(j=1,2,3),则从这8人中任取两人的基本事件为:(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(A4,B1),(A4,B2),(A4,B3), (A5,B1), (A5,B2), (A5,B3),

(A1,A2), (A1,A3), (A2,A3),

(B1,B2),(B1,B3),(B1,B4),(B1,B5),(B2,B3),(B2,B4),(B2,B5),(B3,B4),(B3,B5), (B4,B5),共28个基本事件;……………………………………………………………………10分

其中“成绩落在同一组”包括(A1,A2), (A1,A3), (A2,A3),

(B1,B2),(B1,B3),(B1,B4),(B1,B5),(B2,B3),(B2,B4),(B2,B5),(B3,B4),(B3,B5),

(B4,B5),共包含13个基本事件,故所求概率为.    ……………………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案