精英家教网 > 高中数学 > 题目详情

【题目】对于无穷数列,若,则称收缩数列”.其中,分别表示中的最大数和最小数.已知为无穷数列,其前项和为,数列收缩数列”.

1)若,求的前项和;

2)证明:收缩数列仍是

3)若,求所有满足该条件的.

【答案】(1)(2)证明见解析(3)所有满足该条件的数列

【解析】

1)由可得为递增数列,,从而易得

2)利用

,可证是不减数列(即),而,由此可得收缩数列仍是.

3)首先,由已知,当时,;当时,;当时,*),这里分析的大小关系,均出现矛盾,,结合(*)式可得,因此猜想),用反证法证明此结论成立,证明时假设是首次不符合的项,则,这样题设条件变为*),仿照讨论的情况讨论,可证明.

解:(1)由可得为递增数列,

所以

的前项和为.

2)因为

所以

所以.

又因为,所以

所以收缩数列仍是.

3)由可得

时,

时,,即,所以

时,,即*),

,则,所以由(*)可得,与矛盾;

,则,所以由(*)可得

所以同号,这与矛盾;

,则,由(*)可得.

猜想:满足的数列是:

.

经验证,左式

右式.

下面证明其它数列都不满足(3)的题设条件.

1:由上述时的情况可知,时,是成立的.

假设是首次不符合的项,则

由题设条件可得*),

,则由(*)式化简可得矛盾;

,则,所以由(*)可得

所以同号,这与矛盾;

所以,则,所以由(*)化简可得.

这与假设矛盾.

所以不存在数列不满足符合题设条件.

2:当时,

所以

可得

,所以可得

所以

所以等号成立的条件是

所以,所有满足该条件的数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,,点E在线段BD上,且BD=3BE,过点E作圆O的截面,则所得截面圆面积的取值范围是__.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱中,平面是线段上的动点,是线段上的中点.

(Ⅰ)证明:

(Ⅱ)若,且直线所成角的余弦值为,试指出点在线段上的位置,并求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程,焦点为,已知点上,且点到点的距离比它到轴的距离大1.

(1)试求出抛物线的方程;

(2)若抛物线上存在两动点在对称轴两侧),满足为坐标原点),过点作直线交两点,若,线段上是否存在定点,使得恒成立?若存在,请求出的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线外一点M作抛物线的两条切线,两切点的连线段称为点M对应的切点弦已知抛物线为,点PQ在直线l上,过PQ两点对应的切点弦分别为ABCD

当点Pl上移动时,直线AB是否经过某一定点,若有,请求出该定点的坐标;如果没有,请说明理由

时,点PQ在什么位置时,取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P为椭圆1ab0)上任一点,F1F2为椭圆的焦点,|PF1|+|PF2|4,离心率为

1)求椭圆的方程;

2)若直线lykx+m≠0)与椭圆交于AB两点,若线段AB的中点C的直线yx上,O为坐标原点.求△OAB的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数上有意义,实数满足,若在区间上不存在最小值,则称上具有性质.

1)当,且在区间上具有性质时,求常数的取值范围;

2)已知,且当,判断在区间上是否具有性质,请说明理由:

3)若对于满足的任意实数上具有性质时,且对任意,当时有:,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:(常数),.数列满足:.

1)求的值;

2)求出数列的通项公式;

3)问:数列的每一项能否均为整数?若能,求出k的所有可能值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过多年的运作,双十一抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2018双十一网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在双十一的销售量p万件与促销费用x万元满足(其中a为正常数).已知生产该产品还需投入成本万元(不含促销费用),每一件产品的销售价格定为元,假定厂家的生产能力完全能满足市场的销售需求.

1)将该产品的利润y万元表示为促销费用x万元的函数;

2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.

查看答案和解析>>

同步练习册答案