精英家教网 > 高中数学 > 题目详情
9.(普通班)已知数列{an}的前n项和Sn=n2+2n(n∈N+).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和.

分析 (I)利用递推关系即可得出;
(II)利用“裂项求和”即可得出.

解答 解:(Ⅰ)∵Sn=n2+2n(n∈N+),
∴当n=1时,a1=3.
当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1,
又n=1时满足上式,
∴an=2n+1.
(Ⅱ)∵$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,
∴数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和=$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$=$\frac{n}{3(2n+3)}$.

点评 本题考查了“裂项求和”方法、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.以下命题正确的是(  )
A.经过空间中的三点,有且只有一个平面
B.空间中,如果两个角的两条边分别对应平行,那么这两个角相等
C.空间中,两条异面直线所成角的范围是(0,$\frac{π}{2}$]
D.如果直线l平行于平面α内的无数条直线,则直线l平等于平面α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:
(1)sin(-1200°)cos 1290°+cos(-1020°)•sin(-1050°)
(2)log28+lg0.01+ln$\sqrt{e}+{2^{-1+{{log}_2}^3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线a,b和平面α,β满足α∥β,a?α,b?β,则直线a,b的关系是(  )
A.平行B.相交C.异面D.平行或异面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.由直线y=2x及曲线y=4-2x2围成的封闭图形的面积为(  )
A.1B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(普通班)已知数列{an}满足a1=2,对于任意的n∈N+都有an>0,且(n+1)an2+anan+1-nan+12=0,又知数列{bn}:bn=2n-1+an-1.
(1)求数列{an}的通项an以及它的前n项和Sn
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{-x+1(x≤0)}\\{lnx(x>0)}\end{array}\right.$,则函数y=f[f(x)]+1的零点个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆C:x2+y2-2y-4=0,直线l:mx-y+1-m=0(m∈R),且直线l与圆C交于A、B两点.
(1)直线l横过定点P,求点P的坐标;
(2)若|AB|=$\sqrt{17}$,求m的值;
(3)求弦AB的中点M的轨迹方程,并说明其轨迹的什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.利用定义求sin$\frac{5π}{4}$、cos$\frac{5π}{4}$、tan$\frac{5π}{4}$的值.

查看答案和解析>>

同步练习册答案