精英家教网 > 高中数学 > 题目详情
17.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2,x≤0}\\{2x-6,x>0}\end{array}\right.$的零点个数是2.

分析 令f(x)=0解出零点即可.

解答 解:当x≤0时,令f(x)=0得x2-2=0,解得x=-$\sqrt{2}$.
当x>0时,令f(x)=0得2x-6=0,解得x=3.
故f(x)有两个零点.
故答案为2.

点评 本题考查了函数零点的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.下列命题中:
 ①回归直线除了经过样本点的中心,还至少经过一个样本点;
 ②将一组数据中的每个数都减去同一个数后,平均值有变化,方差没有变化;
③对分类变量X与Y,它们的随机变量K2的观测值k越小,“X与Y有关系”的把握程度越大;
 ④比较两个模型的拟合效果时,如果模型残差平方和越小,则相应的相关指数R2越大,该模型拟合的效果越好.
其中正确命题的序号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$).
(1)若x∈[2,6]时,f(x)max=f(2)=2,f(x)min=f(6)=-2且f(x)在[2,6]上单调递减,求ω,φ的值;
(2)若φ=$\frac{π}{6}$且函数f(x)在[0,$\frac{π}{3}$]上单调递增,求ω的取值范围;
(3)若φ=0且函数f(x)=0在[-π,π]上恰有19个根,求ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在正方体ABCD-A1B1C1D1中,点M、N分别在AB1,BC1上,且AM=$\frac{1}{3}$AB1,BN=$\frac{1}{3}$BC1,则下列结论:
①AA1⊥MN 
②A1C1∥MN
③MN∥面A1B1C1D1 
④B1D1⊥MN
正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.图1是某学生的数学考试成绩的茎叶图,第1次到第14次的考试成绩依次记为A1,A2,…,A14,图2是统计茎叶图中成绩在一定范围内考试次数的一个程序框图,那么程序框图输出的结果是(  )
A.14B.9C.10D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点P为圆C:x2+y2=4上的动点,A(4,0),则线段AP中点M的轨迹方程为(  )
A.(x-2)2+y2=1B.(x+2)2+y2=1C.(x-2)2+y2=4D.x2+(y-2)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合M={1,2},N={|m|}.下面甲、乙、丙、丁四位同学给出四种说法:
甲:若m=1,则N⊆M;乙:若N⊆M,则m=1;
丙:则若m≠1,N?M;丁:m=1和N⊆M成立没有关系.
你认为哪位同学的说法正确?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.二项式(a-1)8的展开式中,最大的二项式系数为(  )
A.C${\;}_{8}^{4}$B.-C${\;}_{8}^{4}$C.C${\;}_{9}^{5}$D.-C${\;}_{9}^{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x,y∈R+,且满足x+2y=2xy,那么x+4y的最小值为(  )
A.3-$\sqrt{2}$B.3+2$\sqrt{2}$C.3+$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

同步练习册答案