精英家教网 > 高中数学 > 题目详情
(2013•东城区二模)某校高三年级同学进行体育测试,测试成绩分为优秀、良好、合格三个等级.测试结果如下表:(单位:人)
优秀 良好 合格
180 70 20
120 a 30
按优秀、良好、合格三个等级分层,从中抽取50人,其中成绩为优的有30人.
(1)求a的值;
(2)若用分层抽样的方法,在合格的同学中按男女抽取一个容量为5的样本,从中任选2人,记X为抽取女生的人数,求X的分布列及数学期望.
分析:(I)利用分层抽样的计算公式即可得出,进而求出a的值;
(II)由题意,X所有取值0,1,2.在合格的同学中按男女抽取一个容量为5的样本,则抽取的男生数=
20
50
×5=2
,抽取的女生数=5-2=3.根据古典概型的概率计算公式分别计算出概率,即可得到分布列及数学期望.
解答:解:(Ⅰ)设该年级共n人,由题意得
50
n
=
30
180+120
,解得n=500.
则a=500-(180+120+70+20+30)=80.
(Ⅱ)依题意,X所有取值0,1,2.
在合格的同学中按男女抽取一个容量为5的样本,则抽取的男生数=
20
50
×5=2
,抽取的女生数=5-2=3.
∴P(X=0)=
C
2
2
C
2
5
=
1
10
,P(X=1)=
C
1
2
C
1
3
C
2
5
=
3
5
,P(X=2)=
C
2
3
C
2
5
=
3
10

X的分布列为:

X 0 1 2
P
1
10
3
5
3
10
EX=
1
10
+1×
3
5
+2×
3
10
=
6
5
点评:熟练掌握分层抽样的意义及其计算公式、古典概型的概率计算公式、随机变量的分布列及其数学期望是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东城区二模)已知函数f(x)=lnx+
a
x
(a>0).
(1)求f(x)的单调区间;
(2)如果P(x0,y0)是曲线y=f(x)上的任意一点,若以P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的最小值;
(3)讨论关于x的方程f(x)=
x3+2(bx+a)
2x
-
1
2
的实根情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)f(x)=
-
2
x
 ,   x<0
3+log2x ,  x>0
,则f(f(-1))等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)根据表格中的数据,可以断定函数f(x)=lnx-
3
x
的零点所在的区间是(  )
x 1 2 e 3 5
lnx 0 0.69 1 1.10 1.61
3
x
3 1.5 1.10 1 0.6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)对定义域的任意x,若有f(x)=-f(
1
x
)
的函数,我们称为满足“翻负”变换的函数,下列函数:
y=x-
1
x

②y=logax+1,
y=
x,0<x<1
0,x=1
-
1
x
,x>1

其中满足“翻负”变换的函数是
①③
①③
. (写出所有满足条件的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,f(x)+xf′(x)<0(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),则a,b,c的大小关系是(  )

查看答案和解析>>

同步练习册答案