精英家教网 > 高中数学 > 题目详情
7、函数f(x)=-x2+8x-14在区间[2,5]上的零点个数是(  )
分析:先找其对称轴对应的值,在看两端点值的正负,利用零点存在性定理有f(a)•f(b)<0来下结论.
解答:解;因为f(x)=-x2+8x-14开口向下,对称轴为x=4,且f(4)=2
f(2)=-2,f(5)=1,故f(x)=-x2+8x-14在[2,4]上有一个零点,在[4,5]上没有零点.
所以f(x)=-x2+8x-14在区间[2,5]上的零点个数是1个
故选B.
点评:本题主要考查知识点是根的存在性及根的个数判断、函数的应用,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案