精英家教网 > 高中数学 > 题目详情

已知定义域为的函数是奇函数.
(Ⅰ)求实数的值;    (Ⅱ)解关于的不等式

(Ⅰ).(Ⅱ)原不等式的解集为

解析试题分析:(Ⅰ)由得:
所以
解得:(舍去),
因此
(Ⅱ)∵
∴函数上单调递减,
得:
所以
解得:
所以原不等式的解集为
考点:本题主要考查函数的奇偶性及单调性的应用。
点评:中档题,研究函数的奇偶性,要注意定义域关于原点对称,其次,研究的关系。抽象不等式,往往要利用奇偶性、单调性转化成具体不等式求解。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数处取得极大值,求函数的单调区间
(2)若对任意实数,不等式恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过点,且点处的切线方程为在
(1)求函数的解析式;            (2)求函数的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于定义在实数集上的两个函数,若存在一次函数使得,对任意的,都有,则把函数的图像叫函数的“分界线”。现已知为自然对数的底数),
(1)求的递增区间;
(2)当时,函数是否存在过点的“分界线”?若存在,求出函数的解析式,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的偶函数上递增,函数f(x)的一个零点为
求满足的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=3-2log2xg(x)=log2x.
(1)如果x∈[1,4],求函数h(x)=(f(x)+1)g(x)的值域;
(2)求函数M(x)=的最大值;
(3)如果不等式f(x2)f()>kg(x)对x∈[2,4]有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,如果函数仅有一个零点,求实数的取值范围.
(2)当时,比较与1的大小.
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当 时,,且
(1)求的值,(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数在点处的切线方程;
(2)求函数单调增区间;
(3)若存在,使得是自然对数的底数),求实数的取值范围.

查看答案和解析>>

同步练习册答案