精英家教网 > 高中数学 > 题目详情

已知函数是定义在上的奇函数,当 时,,且
(1)求的值,(2)求的值.

(1)(2)-6

解析试题分析:(1)由题意可得,(6分)
(2)由(1)可得,当时,(9分)
 (12分)
 (14分)
考点:本题考查了函数性质的运用
点评:解决此类问题通常运用:(1)若f(x)是奇函数,则有⑵若f(x)是奇函数,且在x=0时有意义,则有⑶若f(x)是偶函数则有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若函数的值域为,求的值;
(Ⅱ)若函数的函数值均为非负数,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(Ⅰ)求实数的值;    (Ⅱ)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)写出函数的定义域;(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上奇函数与偶函数,对任意满足+a为实数
(1)求奇函数和偶函数的表达式
(2)若a>2, 求函数在区间上的最值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间
(2)函数的图象在处切线的斜率为若函数在区间(1,3)上不是单调函数,求m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-x+3x+9x+a
⑴求f(x)的单调递减区间;⑵若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(1)若,写出函数的单调递增区间(不必证明);
(2)若,当时,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数有两个极值点,且.
(1)求实数的取值范围;
(2)讨论函数的单调性;
(3)若对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案