精英家教网 > 高中数学 > 题目详情

已知,函数
(1)若,写出函数的单调递增区间(不必证明);
(2)若,当时,求函数在区间上的最小值.

(1)
(2)

解析试题分析:解:(1)当m=0,n=1时,4分
(2)当
8分
①当11分
②当14分
综上所述:16分
考点:函数的单调性
点评:主要是考查了绝对值函数的单调性以及二次函数的最值问题,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

对于定义在实数集上的两个函数,若存在一次函数使得,对任意的,都有,则把函数的图像叫函数的“分界线”。现已知为自然对数的底数),
(1)求的递增区间;
(2)当时,函数是否存在过点的“分界线”?若存在,求出函数的解析式,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当 时,,且
(1)求的值,(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数,是自然对数的底数)是实数集上的奇函数.
(1)求的值;
(2)试讨论函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数处的切线方程为,求实数的值;
(2)若在其定义域内单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数

(1)在如图给定的直角坐标系内画出的图象;
(2)写出的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数在点处的切线方程;
(2)求函数单调增区间;
(3)若存在,使得是自然对数的底数),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

判断函数f(x)=在区间(1,+∞)上的单调性,并用单调性定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)时,求的最小值;
(2)若上是单调函数,求实数的取值范围。

查看答案和解析>>

同步练习册答案