精英家教网 > 高中数学 > 题目详情

定义在上奇函数与偶函数,对任意满足+a为实数
(1)求奇函数和偶函数的表达式
(2)若a>2, 求函数在区间上的最值

(1)=sin2x+acosx ,
(2)当cosx="-1" ,h(x)min=-a,当cosx=, h(x)max=

解析试题分析:(1)+ ①

   ②   3分
联立①②得=sin2x+acosx   5分         7分
(2)=1-cos2x+acosx=-(cosx-)2+1   9分
若a>1,则对称轴>1,且x时,cosx[-1,]  11分
当cosx="-1" ,h(x)min=-a,当cosx=, h(x)max=   14分
考点:本题主要考查函数的奇偶性,三角函数的图象和性质,二次函数的图象和性质。
点评:中档题,根据+求奇函数与偶函数,方法是列方程组。(2)利用换元思想,将问题转化成求二次函数在闭区间的最值问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,若函数处的切线方程为
(1)求的值;
(2)求函数的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的偶函数上递增,函数f(x)的一个零点为
求满足的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,如果函数仅有一个零点,求实数的取值范围.
(2)当时,比较与1的大小.
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


已知函数时都取得极值.
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当 时,,且
(1)求的值,(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若为定义域上的单调增函数,求实数的取值范围;
(Ⅱ)当时,求函数的最大值;
(Ⅲ)当时,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数处的切线方程为,求实数的值;
(2)若在其定义域内单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的偶函数,且当时,.现已画出函数轴左侧的图像,如图所示,并根据图像

(1)写出函数的增区间;
(2)写出函数的解析式;     
(3)若函数,求函数的最小值。

查看答案和解析>>

同步练习册答案