精英家教网 > 高中数学 > 题目详情


已知函数时都取得极值.
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围。

(1)
函数的递增区间是,递减区间是
(2)

解析试题分析:(1)        1分
   4分
,函数的单调区间如下表:

 




 

 


 


 
 

 
极大值
 
极小值
 
所以函数的递增区间是,递减区间是;  7分
(2),当时,
为极大值,而为最大值,  10分
要使恒成立,则只需要,       13分
   
考点:本题主要考查应用导数研究函数的单调性及极(最)值,研究函数的图象和性质,数列不等式的证明。
点评:中档题,本题属于导数应用的基本问题。不等式恒成立问题,常常转化成求函数的最值问题,通过构造函数研究函数的单调性、极值等达到解题目的。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知曲线  在点  处的切线  平行直线,且点在第三象限.
(Ⅰ)求的坐标;
(Ⅱ)若直线  , 且  也过切点 ,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求不等式的解集;
(Ⅱ)若方程有三个不同的解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(b为常数).
(1)函数f(x)的图像在点(1,f(1))处的切线与g(x)的图像相切,求实数b的值;
(2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b 的取值范围;
(3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|> |g(x1)-g(x2)|成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=1n(2ax+1)+-x2-2ax(a∈R).
(1)若y=f(x)在[4,+∞)上为增函数,求实数a的取值范围;
(2)当a=时,方程f(1-x)=有实根,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上奇函数与偶函数,对任意满足+a为实数
(1)求奇函数和偶函数的表达式
(2)若a>2, 求函数在区间上的最值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)求的单调区间和极值;
(Ⅱ)若关于的方程有3个不同实根,求实数a的取值范围.
(Ⅲ)已知当恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在[-1,1]上的奇函数满足,且当时,有
(1)试问函数f(x)的图象上是否存在两个不同的点AB,使直线AB恰好与y轴垂直,若存在,求出AB两点的坐标;若不存在,请说明理由并加以证明.
(2)若对所有恒成立,
求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)求的值
(2)判断上的单调性,并利用定义给出证明

查看答案和解析>>

同步练习册答案