精英家教网 > 高中数学 > 题目详情

设函数
(Ⅰ)求的单调区间和极值;
(Ⅱ)若关于的方程有3个不同实根,求实数a的取值范围.
(Ⅲ)已知当恒成立,求实数k的取值范围.

(Ⅰ)的单调递增区间是,单调递减区间是 
;当 
(Ⅱ)(Ⅲ)  

解析试题分析:(Ⅰ)      1分
∴当,    3分
的单调递增区间是,单调递减区间是  5分
;当  7分
(Ⅱ)由(Ⅰ)的分析可知图象的大致形状及走向(图略)
∴当的图象有3个不同交点,
即方程有三解        9分
(Ⅲ)        11分
上恒成立        12分
,由二次函数的性质,上是增函数,
∴所求k的取值范围是         14分
考点:本题考查了导数的运用
点评:已知函数单调求参数范围时,要在定义域区间上令,因在定义域范围内有限个导数等于零的点不影响其单调性

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.
(Ⅲ)若对任意及任意,恒有 成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数且是减函数,若,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


已知函数时都取得极值.
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当a=l时,求函数的极值;
(2)当a2时,讨论函数的单调性;
(3)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求
实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若为定义域上的单调增函数,求实数的取值范围;
(Ⅱ)当时,求函数的最大值;
(Ⅲ)当时,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若是偶函数,在定义域上恒成立,求实数的取值范围;
(2)当时,令,问是否存在实数,使上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)讨论的奇偶性;
(2)当时,求的单调区间;
(3)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)时,求的极值;
(2)当时,讨论的单调性;
(3)证明:,其中无理数

查看答案和解析>>

同步练习册答案