精英家教网 > 高中数学 > 题目详情

已知函数
(1)若是偶函数,在定义域上恒成立,求实数的取值范围;
(2)当时,令,问是否存在实数,使上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.

(1)
(2)

解析试题分析:解:(1)是偶函数, 
恒成立即
   
时,  
时,, 
综上:                 
(2)
是偶函数,要使上是减函数在上是增函数,即只要满足在区间上是增函数在上是减函数 .
,当,由于时,
是增函数记,故在区间上有相同的增减性,当二次函数在区间上是增函数在上是减函数,其对称轴方程为
考点:函数的性质的综合运用
点评:主要是考查了函数奇偶性和单调性以及不等式的恒成立问题的综合运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=1n(2ax+1)+-x2-2ax(a∈R).
(1)若y=f(x)在[4,+∞)上为增函数,求实数a的取值范围;
(2)当a=时,方程f(1-x)=有实根,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)求的单调区间和极值;
(Ⅱ)若关于的方程有3个不同实根,求实数a的取值范围.
(Ⅲ)已知当恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a为实数,函数f(x)=(x2+1)(xa),若f′(-1)=0,求函数yf(x)在上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在[-1,1]上的奇函数满足,且当时,有
(1)试问函数f(x)的图象上是否存在两个不同的点AB,使直线AB恰好与y轴垂直,若存在,求出AB两点的坐标;若不存在,请说明理由并加以证明.
(2)若对所有恒成立,
求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,当时,,且对于任意的,恒有成立.
(1)求
(2)证明:函数上单调递增;
(3)当时,
①解不等式
②求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)判断函数的奇偶性;
(2)判断函数上的单调性,并给出证明;
(3)当时,函数的值域是,求实数的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(1)求的极小值;
(2)若上为单调增函数,求的取值范围;
(3)设,若在是自然对数的底数)上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

同步练习册答案